Technical Library | 2019-12-26 19:13:52.0
Plated through hole (PTH) plays a critical role in printed circuit board (PCB) reliability. Thermal fatigue deformation of the PTH material is regarded as the primary factor affecting the lifetime of electrical devices. Numerous research efforts have focused on the failure mechanism model of PTH. However, most of the existing models were based on the one-dimensional structure hypothesis without taking the multilayered structure and external pad into consideration.In this paper, the constitutive relation of multilayered PTH is developed to establish the stress equation, and finite element analysis (FEA) is performed to locate the maximum stress and simulate the influence of the material properties. Finally, thermal cycle tests are conducted to verify the accuracy of the life prediction results. This model could be used in fatigue failure portable diagnosis and for life prediction of multilayered PCB.
Technical Library | 2024-07-24 00:51:44.0
A blade server system (BSS) utilizes voltage regulator modules (VRMs), in the form of quad flat no-lead (QFN) devices, to provide power distribution to various components on the system board. Depending on the power requirements of the circuit, these VRMs can be mounted as single devices or banked together. In addition, the power density of the VRM can be high enough to warrant heat dissipation through the use of a heat sink. Typically, at field conditions (FCs), the BSS are powered on and off up to four times per day, with their ambient temperature cycling between 258C and 808C. This cyclical temperature gradient drives inelastic strain in the solder joints due to the coefficient of thermal expansion (CTE) mismatch between the QFN and the circuit card. In addition, the heat sink, coupled with the QFN and the circuit card, can induce additional inelastic solder joint strain, resulting in early solder joint fatigue failure. To understand the effect of the heat sink mounting, a FEM (finite element model of four QFNs mounted to a BSS circuit card was developed. The model was exercised to calculate the maximum strain energy in a critical joint due to cyclic strain, and the results were compared for a QFN with and without a heat sink. It was determined that the presence of the heat sink did contribute to higher strain energy and therefore could lead to earlier joint failure. Although the presence of the heat sink is required, careful design of the mounting should be employed to provide lateral slip, essentially decoupling the heat sink from the QFN joint strain. Details of the modeling and results, along with DIC (digital image correlation) measurements of heat sink lateral slip, are presented.
Technical Library | 2020-10-27 02:07:31.0
For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.
1 |
Products, services, training & consulting for the assembly, rework & repair of electronic assemblies. BGA process experts. Manufacturers Rep, Distributor & Service Provider for Seamark/Zhuomao and Shuttle Star BGA Rework Stations.
Training Provider / Manufacturer's Representative / Equipment Dealer / Broker / Auctions / Consultant / Service Provider
1750 Mitchell Ave.
Oroville, CA USA
Phone: (888) 406-2830