Technical Library: metallization (Page 6 of 10)

A Review of Corrosion and Environmental Effects on Electronics

Technical Library | 2013-08-01 13:17:44.0

Electronic industry uses a number of metallic materials in various forms. Also new materials and technology are introduced all the time for increased performance. In recent years, corrosion of electronic systems has been a significant issue. Multiplicity of materials used is one reason limiting the corrosion reliability. However, the reduced spacing between components on a printed circuit board (PCB) due to miniaturization of device is another factor that has made easy for interaction of components in corrosive environments. Presently the knowledge on corrosion issues of electronics is very limited. This paper reviews briefly the materials used in electronic systems, factors influencing corrosion, types of corrosion observed in electronics, and testing methods.

Technical University of Denmark

Advanced Thermal Management Solutions on PCBs for High Power Applications

Technical Library | 2014-11-13 19:23:50.0

With increasing power loss of electrical components, thermal performance of an assembled device becomes one of the most important quality factors in electronic packaging. Due to the rapid advances in semiconductor technology, particularly in the regime of high-power components, the temperature dependence of the long-term reliability is a critical parameter and has to be considered with highest possible care during the design phase (...) The aim of this paper is to give a short overview about standard thermal solutions like thick copper, thermal vias, plugged vias or metal core based PCBs. Furthermore, attention will be turned on the development of copper filled thermal vias in thin board constructions...

Tridonic GmbH & Co KG

High-Performance Ink-Jet Printed Graphene Resistors Formed With Environmentally-Friendly Surfactant-Free Inks For Extreme Thermal Environments

Technical Library | 2018-01-11 10:48:48.0

Ink-jet printing is poised to impact the manufacturing of devices that are particularly attractive for flexible electronics, as more suitable and printable fluids become available. The addition of surfacants in the preparation of the inks usually results in additional process steps, potentially increasing cost, as well as material waste, where the surfactants also often have a negative impact on specific properties of the printed features, such as comprising electrical conductivity of metallic structures. (...)In this work, we have successfully formulated a suitable ink derived from a mixture of terpineolin cyclohexanone as a more environmentally friendly option for the exfoliation of bulk graphite, which we elaborate upon in more detail here.

University of Texas

High Throw DC Acid Copper Formulation for Vertical Continuous Electroplating Processes

Technical Library | 2018-10-31 20:35:49.0

The electronics industry has grown immensely over the last few decades owing to the rapid growth of consumer electronics in the modern world. New formulations are essential to fit the needs of manufacturing printed circuit boards and semiconductors. Copper electrolytes for high throwing power applications with high thermal reliability and high throughput are becoming extremely important for manufacturing high aspect ratio circuit boards.Here we discuss innovative DC copper metallization formulations for hoist lines and VCP (Vertical Continues Plating) applications with high thermal reliability and throughput for high aspect ratio PCB manufacturing

MacDermid Inc.

Aluminum Soldering - Product Guide

Technical Library | 2020-07-29 20:12:52.0

Aluminum is a metal that it is hard to solder due to the high surface tension difference between it and molten solder alloy. This occurs because aluminum rapidly forms a tenacious oxide layer whenever it is exposed to oxygen in the air. The oxide layer is responsible for the high surface tension difference between the aluminum and the solder and impedes the solder from spreading evenly on an aluminum surface. There are hundreds of aluminum alloys available in the marketplace; it is important to identify the form of aluminum that is being soldered. Once this is done, an appropriate soldering technique can be chosen for soldering the specific aluminum alloy under consideration. Direct aluminum soldering eliminates using expensive plating techniques to prepare the aluminum surface for soldering.

Superior Flux & Mfg. Co.

Waste-Printed Circuit Board Recycling: Focusing on Preparing Polymer Composites and Geopolymers

Technical Library | 2021-06-07 19:03:05.0

The waste from end-of-life electrical and electronic equipment has become the fastest growing waste problem in the world. The difficult-to-treat waste-printed circuit boards (WPCBs), which are nearly 3−6 wt % of the total electronic waste, generate great environmental concern nowadays. For WPCB treatment and recycling, the mechanical−physical method has turned out to be more technologically and economically feasible. In this work, the mechanical−physical treatment and recycling technologies for WPCBs were investigated, and future research was directed as well. Removing electric and electronic components(EECs) from WPCBs is critical for their crushing and metal recovery; however, environmentally friendly and high-efficiency removal techniques need be developed. Concentrated metals rich in Cu, Al, Au, Pb, and Sn recovered from WPCBs need be further refined to add to their economic values. The low value added nonmetallic fraction of waste-printed circuit boards (NMF-WPCBs) accounts for approximately 60 wt % of the WPCBs. From the perspective of environmental management, a zero-waste approach to recycling them should be developed to gain values. Preparing polymer composites and geopolymers offers many advantages and has potential applications in various fields, especially as construction and building materials. However, the mechanical and thermal properties of NMF-WPCBs composites should be further improved for preparing polymer composites. Surface modification or filler blending could be applied to improve the interfacial comparability between NMF-WPCBs and the polymer matrix. The NMFWPCBs shows potential in preparing cement mortar and geological polymers, but the environmental safety resulting from metals needs to be taken into account. This study will provide a significant reference for the industrial recycling of NMF-WPCBs

Zhejiang University

Surface Treatment Enabling Low Temperature Soldering to Aluminum

Technical Library | 2020-07-29 19:58:48.0

The majority of flexible circuits are made by patterning copper metal that is laminated to a flexible substrate, which is usually polyimide film of varying thickness. An increasingly popular method to meet the need for lower cost circuitry is the use of aluminum on Polyester (Al-PET) substrates. This material is gaining popularity and has found wide use in RFID tags, low cost LED lighting and other single-layer circuits. However, both aluminum and PET have their own constraints and require special processing to make finished circuits. Aluminum is not easy to solder components to at low temperatures and PET cannot withstand high temperatures. Soldering to these materials requires either an additional surface treatment or the use of conductive epoxy to attach components. Surface treatment of aluminum includes the likes of Electroless Nickel Immersion Gold plating (ENIG), which is extensive wet-chemistry and cost-prohibitive for mass adoption. Conductive adhesives, including Anisotropic Conductive Paste (ACP), are another alternate to soldering components. These result in component substrate interfaces that are inferior to conventional solders in terms of performance and reliability. An advanced surface treatment technology will be presented that addresses all these constraints. Once applied on Aluminum surfaces using conventional printing techniques such as screen, stencil, etc., it is cured thermally in a convection oven at low temperatures. This surface treatment is non-conductive. To attach a component, a solder bump on the component or solder printed on the treated pad is needed before placing the component. The Aluminum circuit will pass through a reflow oven, as is commonly done in PCB manufacturing. This allows for the formation of a true metal to metal bond between the solder and the aluminum on the pads. This process paves the way for large scale, low cost manufacturing of Al-PET circuits. We will also discuss details of the process used to make functional aluminum circuits, study the resultant solder-aluminum bond, shear results and SEM/ EDS analysis.

Averatek Corporation

Effects of Thermal Aging on Copper Dissolution For SAC 405 Alloy

Technical Library | 2010-07-08 19:49:59.0

Aging characteristics of new lead free solder alloys are in question by many experts because of higher amount of tin’s effect on the diffusion of other metals, primarily copper, to create undesirable boundary intermetallics over long periods of time and even moderately elevated temperatures. A primary layer of intermetallics, Cu6Sn5 forms as the liquid solder makes contact with the solid copper substrate. This reaction however ceases as the solder temperature falls below that of liquidus. A secondary intermetallic Cu3Sn1, an undesirable weak and brittle layer, is thought to form over time and may be accelerated by even mildly elevated temperatures in electronic modules such as laptops under power. This project was designed to quantify the growth rate of Cu3Sn1 over an extended period of time in a thermal environment similar to a laptop in the power on mode.

Radiance Technologies

OOOH Colors, It Must Be Lead Free

Technical Library | 2014-06-23 14:50:52.0

It was unusual to see chip terminations change colors when tin lead solders were used but with the introduction of lead free reflow soldering and the corresponding increases in reflow temperatures terminations are now changing colors. Two conditions are present when reflow temperatures are increased for lead free solder alloys that leads to discoloration. Reflow temperatures are above the melting point of tin (Sn MP is 232oC). Air temperatures commonly used in forced convection reflow systems are high enough to both melt the tin plating on the termination allowing it to be pulled into the solder joint due to solder joint liquid solder surface tension leaving behind the exposed nickel barrier. Now those metal oxide colors will be visible due to high air temperatures during reflow.

Johanson Dielectrics, Inc.

Failure Modes in Wire bonded and Flip Chip Packages

Technical Library | 2014-12-11 18:00:09.0

The growth of portable and wireless products is driving the miniaturization of packages resulting in the development of many types of thin form factor packages and cost effective assembly processes. Wire bonded packages using conventional copper lead frame have been used in industry for quite some time. However, the demand for consumer electronics is driving the need for flip chip interconnects as these packages shorten the signals, reduce inductance and improve functionality as compared to the wire bonded packages. The flip chip packages have solder bumps as interconnects instead of wire bonds and typically use an interposer or organic substrate instead of a metal lead frame (...) The paper provides a general overview of typical defects and failure modes seen in package assembly and reviews the efforts needed to understand new failure modes during package assembly. The root cause evaluations and lessons learned as the factory transitioned to thin form factor packages are shared

Peregrine Semiconductor


metallization searches for Companies, Equipment, Machines, Suppliers & Information