Technical Library: mirtec and false (Page 1 of 1)

Issues and Challenges of Testing Modern Low Voltage Devices with Conventional In-Circuit Testers

Technical Library | 2012-12-14 14:25:37.0

The popularity of low voltage technologies has grown significantly over the last decade as semiconductor device manufacturers have moved to satisfy market demands for more powerful products, smaller packaging, and longer battery life. By shrinking the size of the features they etch into semiconductor dice, IC manufacturers achieve lower costs, while improving speed and building in more functionality. However, this move toward smaller features has lead to lower breakdown voltages and increased opportunities for component overstress and false failures during in-circuit test.

Teradyne

Increase Your Process Control and Lower Cost of Ownership

Technical Library | 2012-11-12 14:06:48.0

With consumers constantly looking for lower prices on their technology products and manufacturers trying to squeak out higher margins from their production lines, the need for process control and lower overhead costs have become even more important. One sector that is often overlooked is the hand soldering area of the factory. Many factories have been struggling with antiquated soldering systems for years. In some cases they are trying to make their investment in stations last much longer than they were designed for, or they are falsely trying to recoup their original investment ‐ all at the cost of higher operating expenses or even worse, reduced operator thru‐put.

Metcal

Causes and Costs of No Fault Found Events

Technical Library | 2016-04-14 13:49:44.0

A system level test, usually built-in test (BIT), determines that one or more subsystems are faulty. These subsystems sent to the depot or factory repair facility, called units under test (UUTs) often pass that test, an event we call No-Fault-Found (NFF). With more-and more electronics monitored by BIT, it is more likely that an intermittent glitch will trigger a call for a maintenance action resulting in NFF. NFFs are often confused with false alarm (FA), cannot duplicate (CNDs)or retest OK (RTOK) events. NFFs at the depot are caused by FAs, CNDs, RTOKs as well as a number of other complications. Attempting to repair NFF scan waste precious resources, compromise confidence in the product, create customer dissatisfaction, and the repair quality remains a mystery. The problem is compounded by previous work showing that most failure indications calling for repair action at the system level are invalid. NFFs can be caused by real failures or may be a result of system level false alarms. Understanding the cause of the problem may help us distinguish between units under test (UUTs) that we can repair and those that we cannot. In calculating the true cost of repair we must account for wasted effort in attempting to repair unrepairable UUTs.This paper will shed some light on this trade-off. Finally, we will explore approaches for dealing with the NFF issue in a cost effective manner.

A.T.E. Solutions, Inc.

  1  

mirtec and false searches for Companies, Equipment, Machines, Suppliers & Information