Technical Library: mode (Page 1 of 4)

Optimizing Reflowed Solder TIM (sTIMs) Processes for Emerging Heterogeneous Integrated Packages

Technical Library | 2023-01-17 17:12:33.0

Reflowed indium metal has for decades been the standard for solder thermal interface materials (solder TIMs or sTIMs) in most high-performance computing (HPC) TIM1 applications. The IEEE Heterogeneous Integration Thermal roadmap states that new thermal interface materials solutions must provide a path to the successful application of increased total-package die areas up to 100cm2. While GPU architectures are relatively isothermal during usage, CPU hotspots in complex heterogeneously-integrated modules will need to be able to handle heat flux hotspots up to 1000W/cm2 within the next two years. Indium and its alloys are used as reflowed solder thermal interface materials in both CPU and GPU "die to lid/heat spreader" (TIM1) applications. Their high bulk thermal conductivity and proven long-term reliability suit them well for extreme thermomechanical stresses. Voiding is the most important failure mode and has been studied by x-ray. The effects of surface pretreatment, pressure during reflow, solder flux type/fluxless processing, and preform design parameters, such as alloy type, are also examined. The paper includes data on both vacuum and pressure (autoclave) reflow of sTIMs, which is becoming necessary to meet upcoming requirements for ultralow voiding in some instances.

Heller Industries Inc.

Pad Cratering

Technical Library | 2020-05-08 18:22:31.0

A customer contacted the Helpline to perform analysis on a lead-free assembly which exhibited intermittent functionality. The lead-free assembly exhibiting intermittent functionality when pressure was applied to the ball grid array (BGA) packages. Industrial adaptation of a Restriction of Hazardous Substances (RoHS) compliant solder standard has created a new host of failure modes observed in lead-free assemblies. Pad cratering occurs when fractures propagate along the epoxy resin layer on the underside of the BGA connecting pads. While originating from process, design, and end use conditions, it is the combination of a rigid lead-free solder with inflexible printed circuit board (PCB) laminates that has advanced the prevalence of this condition. Pad cratering is simply the result of mechanical stress exceeding material limitations.

ACI Technologies, Inc.

UV Laser PCB Depaneling Machine Improve Cutting Effect

Technical Library | 2021-09-02 08:17:07.0

We are a professional manufacturer of PCB depaneling machines, which is workable for all boards, including flex and regid boards, v-scored boards and routed boards. Laser pcb depaneling is non-contact way without mechanical stress,this solution is good for modern precision PCB depaneling. It has below advantages: 1. No dust The production environment of the circuit board industry is carried out in the dust-free workshop. The traditional pcb depaneling equipment, such as blade moving type machine, will inevitably produce residues and micro powder, which will pollute the 10000 and 1000 class dust-free workshops and affect the conductivity of products. The UV laser PCB cutting machine is a vaporization processing process, which will not produce dust and is conducive to the conductivity of the product. 2. High cutting precision The processing gap of high-precision traditional processing equipment can not reach the gap width of less than 100 microns, which will cause certain damage to the lines on the edge or PCBA circuit board containing components. The focus spot of the laser cutting machine is small, and the ultraviolet cold processing mode has little thermal impact on the edge of the circuit board. The cutting position accuracy is less than 50 microns, and the cutting size accuracy is less than 30 microns, which will not affect the edge of the circuit board, and the precision is high. 3. No stress Traditional processing methods generally have V-grooves, which will cause certain damage to the board in the manufacturing process. The UV laser PCB cutting machine can directly cut the bare board without making V-grooves. In addition, the traditional processing methods directly use tools to act on the circuit board, especially the stamping method has a great impact on the circuit board, which is easy to cause board deformation. The laser cutting machine is a non-contact processing mode, which acts on the surface of the material through the high-energy beam, which will not cause the influence of stress and the deformation and damage of the circuit board. 4. For special-shaped cutting, it is easy to automate The UV laser PCB cutting machine can cut for any shape without replacing any props and fixtures, and without steel mesh. The same equipment can meet special-shaped and straight-line cutting, which is easy to realize assembly line automatic production and high flexibility. It is easy to improve production efficiency and save production process and production cycle. In particular, it can quickly and efficiently meet the needs of rapid proofing, directly import the drawing, and then locate the cutting. 5. High compatibility The UV laser PCB cutting machine can process the materials around the circuit board, such as PCB, FPC, covering film, pet, reinforcing board, IC, ultra-thin metal cutting, etc. it has strong practicability, is compatible with the processing of a variety of materials, is easy to operate, can be imported into the drawing, does not need to adjust any mechanical parts, and is easy to operate and maintain. 6. Good cutting edge effect The cutting edge is smooth and neat without burr. It can be processed and formed directly according to the size of the drawing, which is conducive to improving the yield of the product. It can be directly installed into the subsequent process without further processing. For more details about UV laser depaneling, please feel free to contact us. www.pcbdepanelingrouter.com

Winsmart Electronic Co.,Ltd

Precision Control in Electronic Assembly: Selective Wave Soldering Machine

Technical Library | 2024-02-26 09:08:23.0

Precision Control in Electronic Assembly: Selective Wave Soldering Machine Discover the technical features of I.C.T's Selective Wave Soldering Machines, including precision flux application and innovative preheating systems. Learn how these machines redefine efficiency and reliability in electronic assembly. Introduction: Enhancing Precision Soldering: Technical Features of Selective Wave Soldering Machines by I.C.T Explore the innovative design and operation of I.C.T's Selective Wave Soldering Machines, featuring a seamless PCB handling system and modular design for enhanced assembly line flexibility. Experience precision control and efficiency with comprehensive PC controls, allowing easy adjustment of solder parameters like temperature and flux type. Automatic calibration and CCD mark positioning ensure consistent soldering quality. Detail Excellence: Enhancing Selective Wave Soldering Technology Flux System Mastery German high-frequency pulse injection valve ensures precise flux application. Optional flux nozzle jam detection simplifies maintenance. Pressure tank and precision pressure flow meter ensure consistent flux control. Preheat System Excellence Bottom IR preheating system ensures stability and efficiency. Maintenance is simplified with a tool-free mode and plug-in design. Soldering System Innovation Swedish "PRECIMETER" electromagnetic pump coil ensures stability. Stainless steel soldering pot prevents tin liquid leakage. N2 online heating system reduces solder dross. Transmission System Mastery Specially designed material profiles ensure operational stability. Thickened customized rails guarantee flawless operation. Control and Intelligence Keyence PLC+module high-end bus control system ensures stability. Industry 4.0 compliance allows guided programming and real-time data visualization. Market Promotion and Success Stories: Elevating Selective Wave Soldering Machine I.C.T's strategic market positioning has led to global success across diverse industries. Success stories from European clients highlight reliability and trust in the machine. Over 70 units sold across 20+ countries since 2022, establishing its industry-leading position. Conclusion Conclusion: I.C.T's Selective Wave Soldering Machine combines technical excellence with global market success, solidifying its leadership in precision soldering technology.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

ICT-T550 Revolutionizes SMT PCB Coating in Industry 4.0

Technical Library | 2023-11-22 09:17:49.0

In the dynamic realm of Industry 4.0, I.C.T introduces the I.C.T-T550 SMT PCB coating machine, a pioneering addition designed to meet the evolving needs of modern manufacturing. This advanced equipment is equipped with features that not only boost productivity but also prioritize precise and consistent coating quality. Let's delve into the crucial attributes that establish the I.C.T-T550 as a vital component in your production process. 1. Automated Precision for Coating Consistency The I.C.T-T550 PCB Coating Machine integrates an automated pressure regulation system for both dispensing valve and pressure tank, equipped with precision regulators and digital gauges. This ensures a consistent coating process, optimizing precision. 2. Front-End Accessibility for Operational Efficiency Located at the front end, power supply and air pressure adjustments are easily accessible, streamlining control. This user-friendly design enhances operator workflow efficiency. 3. Durable Material Transport The open-material transport rail undergoes hardening treatment and utilizes a specialized stainless steel chain drive, ensuring both longevity and reliable material transport. 4. Track Width Adjustment for Trouble-Free Operation Track width adjustment is achieved through a synchronous belt drive mechanism, ensuring prolonged and trouble-free operation. 5. CNC Machined Frame for Unparalleled Precision The machine's frame, subjected to CNC machining, features an independent, all-steel gantry frame, ensuring the parallel alignment of tracks and axes. 6. Workshop Environment Enhancement To ensure a cleaner and safer workspace, the equipment features air curtains at the track entrance and exit, preventing fumes from escaping. It also includes a dedicated exhaust outlet, improving overall workshop air quality. 7. Intuitive Programming and Visualization The I.C.T-T550 PCB Coating Machine allows flexible coating path editing through intuitive programming. The equipment employs a teach mode for programming, offering a visual interface for coating path design. 8. User-Friendly Interface with Practical Design Featuring a user-friendly interface with fault alerts and menu displays, the I.C.T-T550 delivers a sleek and practical design. 9. Streamlined Repetition and Data Management Efficiency is paramount, and the I.C.T-T550 offers the ability to mirror, array, and replicate coating paths, simplifying the process, especially with multiple boards. 10. Real-Time Data Monitoring The equipment automatically collects and displays data, including production volume and individual product work times, enabling effective production performance tracking. 11. Smart Adhesive Management The I.C.T-T550 intelligently monitors adhesive levels, providing automatic alerts for replenishment, ensuring uninterrupted coating. In summary, the I.C.T SMT PCB coating machine seamlessly combines precision, automation, and smart features to meet the demands of Industry 4.0. With integration into MES systems, it provides a reliable and efficient solution for elevating PCB coating processes. The I.C.T-T550's adherence to European safety standards and CE certification underscores our commitment to safety and compliance. For further inquiries or information about additional safety standards, please contact us. Whether optimizing coating quality or enhancing factory productivity, the I.C.T-T550 marks a step into the future of intelligent manufacturing. Explore a variety of coating valves or seek guidance by reaching out to us.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Micro-Sectioning of PCBs for Failure Analysis

Technical Library | 2010-01-13 12:34:10.0

Micro-sectioning (sometimes referred to as cross-sectioning)is a technique, used to characterize materials or to perform a failure mode analysis, for exposing an internal section of a PCB or package. Destructive in nature, cross-sectioning requires encapsulation of the specimen in order to provide support, stability, and protection. Failures that can be investigated through micro-sectional analysis include component defects, thermo-mechanical failures, processing failures related to solder reflow, opens or shorts, voiding and raw material evaluations.

BEST Inc.

Extending Soldering Iron Tip Life

Technical Library | 1999-05-09 13:05:12.0

This Technical Note discusses the construction of solder tips, the various failure modes associated with tip plating (cracking, wear, corrosion, and dewetting), how to diagnose those failure modes, and specific practices that can be taken to minimize or eliminate each one.

Metcal

Accurate Quantitative Physics-of-Failure Approach to Integrated Circuit Reliability

Technical Library | 2011-06-02 15:49:09.0

Modern electronics typically consist of microprocessors and other complex integrated circuits (ICs) such as FPGAs, ADCs, and memory. They are susceptible to electrical, mechanical and thermal modes of failure like other components on a printed circuit boa

DfR Solutions

Flex Crack Mitigation

Technical Library | 2008-10-23 15:36:58.0

As part of continuous process improvement at KEMET, most failure modes caused by the capacitor manufacturing process have been systematically eliminated. Today these capacitor manufacturing-related defects are now at a parts per billion (PPB) level. Pareto analysis of customer complaints indicates that the #1 failure mode is IR failure due to flex cracks.

KEMET Electronics Corporation

Coatings and Pottings: A Critical Update

Technical Library | 2021-08-11 01:00:37.0

Conformal coatings and potting materials continue to create issues for the electronics industry. This webinar will dig deeper into the failure modes of these materials, specifically issues with Coefficient of Thermal Expansion (CTE), delamination, cracking, de-wetting, pinholes/bubbles and orange peel issues with conformal coatings and what mitigation techniques are available. Similarly, this webinar will look at the failure modes of potting materials, (e.g Glass Transition Temperature (Tg), PCB warpage, the effects of improper curing and potential methods for correcting these situations.

DfR Solutions

  1 2 3 4 Next

mode searches for Companies, Equipment, Machines, Suppliers & Information

Selective soldering solutions with Jade soldering machine

High Precision Fluid Dispensers
Blackfox IPC Training & Certification

High Throughput Reflow Oven
SMTAI 2024 - SMTA International

World's Best Reflow Oven Customizable for Unique Applications
SMT feeders

Reflow Soldering 101 Training Course