Technical Library: models (Page 7 of 9)

Solder Phase Coarsening, Fundamentals, Preparation, Measurement and Prediction

Technical Library | 2009-05-07 23:23:00.0

Thermal fatigue has been one of the most serious problems for solder joint reliability. Thermo-mechanical fatigue failure is considered to be closely related to micro-structural coarsening (grain/phase growth). Factors that influence the phase growth are studied and measurement methods are discussed, including the preparation of the eutectic solder sample for phase size measurement. Three categories of models used to predict grain growth in polycrystalline materials are presented. Finally, phase growth in solder during high temperature aging and temperature cycling and its use as a damage correlation factor are discussed.

DfR Solutions

“Near-Shoring” Electronics Manufacturing

Technical Library | 2013-04-12 08:20:15.0

There is much to read about the shifting sands of electronics manufacturing, including current moves by OEMs to alter their EMS relationships to better mitigate risk and cost, while EMS companies look for additional ways in which to adjust their business models in an attempt to improve their profitability. Electronics outsourcing over time evolved from a means to buffer manufacturing demand fluctuations into a wide scale shift in capabilities, in part in order to deal with vastly shorter product life cycles. Following the global economic crash of 2000, aka “the internet bubble,” more and more EMS providers responded by transferring their manufacturing to low cost labour regions, and in particular China.

JJS Electronics LTD

Using Physics of Failure to Predict System Level Reliability for Avionic Electronics

Technical Library | 2013-12-11 23:24:32.0

Today's analyses of electronics reliability at the system level typically use a "black box approach", with relatively poor understanding of the behaviors and performances of such "black boxes" and how they physically and electrically interact (...) The incorporation of more rigorous and more informative approaches and techniques needs to better understand (...) Understanding the Physics of Failure (PoF) is imperative. It is a formalized and structured approach to Failure Analysis/Forensics Engineering that focuses on total learning and not only fixing a particular current problem (...) In this paper we will present an explanation of various physical models that could be deployed through this method, namely, wire bond failures; thermo-mechanical fatigue; and vibration.

DfR Solutions

Effects of Packaging Materials on the Lifetime of LED Modules Under High Temperature Test

Technical Library | 2014-11-18 23:59:30.0

Performance degradation of packaging material is an important reason for the lifetime reduction of LED. In order to understanding the failure behavior of packaging material, silicone and phosphor were chosen to fabricate LED samples within which an aging test at 125℃ was performed. The result of online luminance measurement showed that LED samples with both silicone and phosphor had the highest luminance decay rate among all test samples because the carbonization of silicone and the consequent outgassing reduced the luminance quickly. The result of the luminance variance with test time was analyzed and an exponential decay model was developed with which the lifetime of LED under high temperature could be estimated.

Hubei University of Technology

Electromigration Damage Mechanics of Lead-Free Solder Joints Under Pulsed DC: A Computational Model

Technical Library | 2013-06-13 15:31:24.0

Electromigration (EM) is a mass transportation mechanism driven by electron wind force, thermal gradient, chemical potential and stress gradient. According to Moore’s law, number of transistors on integrated circuits (ICs) doubles approximately every 2 years. Moore’s law holds true since its introduction in 1970s. This insatiable demand for smaller ICs size, larger integration and higher Input/Output (IO) count of microelectronics has made ball grid array (BGA) the most promising connection type in electronic packaging industry. This trend, however, renders EM reliability of solders joints a major bottleneck to hinder further development of electronics industry...

Electronic Packaging Laboratory, State University of New York

Modeling Temperature Cycle Fatigue Life of Select SAC Solders

Technical Library | 2021-09-08 13:57:37.0

While the presence of silver in SAC solder provided excellent temperature cycling durability, the silver in high silver SAC alloy also made the solders susceptible to failures under drop/shock loading. To improve the drop/shock reliability, the silver content in SAC alloys was reduced from three percent, to as low as no silver. Solder dopants, also known as microalloy additions, are elements (typically 0.1% or lower) other than the main constituents of the alloy that have been shown to improve solder performance. Commonly used microalloy additions include nickel (Ni), bismuth (Bi), manganese (Mn), and antimony (Sb).

CALCE Center for Advanced Life Cycle Engineering

Microelectronics Reliability: Physics-of-Failure Based Modeling and Lifetime Evaluation

Technical Library | 2024-04-22 20:16:01.0

The solid-state electronics industry faces relentless pressure to improve performance, increase functionality, decrease costs, and reduce design and development time. As a result, device feature sizes are now in the nanometer scale range and design life cycles have decreased to fewer than five years. Until recently, semiconductor device lifetimes could be measured in decades, which was essentially infinite with respect to their required service lives. It was, therefore, not critical to quantify the device lifetimes exactly, or even to understand them completely. For avionics, medical, military, and even telecommunications applications, it was reasonable to assume that all devices would have constant and relatively low failure rates throughout the life of the system; this assumption was built into the design, as well as reliability and safety analysis processes.

NASA Office Of Safety And Mission Assurance

Non‑Invasive Monitoring Of Ph And Oxygen Using Miniaturized Electrochemical Sensors In An Animal Model Of Acute Hypoxia

Technical Library | 2022-01-19 17:50:20.0

pH and oxygen electrochemical sensors were evaluated in a ventilatory hypoxia rabbit model. The ventilator hypoxia protocol included 3 differential phases: basal (100% FiO2), the hypoxia-acidosis period (10% FiO2) and recovery (100% FiO2). Sensors were tested in blood tissue (ex vivo sensing) and in muscular tissue (in vivo sensing). pH electrochemical and oxygen sensors were evaluated on the day of insertion (short-term evaluation) and pH electrochemical sensors were also tested after 5 days of insertion (long-term evaluation). pH and oxygen sensing were registered throughout the ventilatory hypoxia protocol (basal, hypoxia-acidosis, and recovery) and were compared with blood gas metabolites results from carotid artery catheterization (obtained with the EPOC blood analyzer).

Universitat de Barcelona

Innovation ploughing into the automotive industry with the help of PCB’s

Technical Library | 2016-08-17 01:24:36.0

To stake a claim in upcoming new technologies and increasing improved customer experience, it is now becoming a central point of consideration to bring out the new classy vehicle design, car manufacturing techniques, testing system in the global market. The current vehicle manufacturer’s also aim to maintain equilibrium between deep capital investment and long product cycle to make the car model a success story. With this, the type of printed circuit board to be used in the vehicle is decided with focusing more on the type of material used in the vehicle and the level of electronic manufacturing and design solution needed in the vehicle production. To go into the roots of the automotive industry, it is equally important to get insights into the PCB used in vehicles and the new innovations brought forward by researchers to create a dream vehicle of the series. The below paragraph drives you to the types of PCB used in the automotive sector.

Technotronix

Making the Move from Machine Monitoring to SMART Manufacturing and the Implications on Profiling Systems

Technical Library | 2016-09-12 10:16:04.0

It is hard to open an Industry newsletter or visit an equipment manufacturer’s website without coming across a mention of the Internet of Things (IoT), Industry 4.0, SMART Manufacturing or ‘big data’. The accessibility to obtain data will only increase and this information and its real-time processing will become one of the most important resources for companies in the future. Production machinery will no longer simply processes the product, but the product will communicate with the machinery to tell it exactly what to do. Industry 4.0 has the vision to connects embedded system technologies and SMART production processes to drastically transform industry and production giving way to the SMART factory development. Future development in oven technology will allow machines to be controlled more intelligently and remotely resulting in the lowest cost model for manufacturing flow.

Solderstar


models searches for Companies, Equipment, Machines, Suppliers & Information

thru hole soldering and selective soldering needs

Component Placement 101 Training Course
One stop service for all SMT and PCB needs

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
SMT feeders

World's Best Reflow Oven Customizable for Unique Applications
convection smt reflow ovens

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...