Technical Library: moisture causing delamination (Page 1 of 2)

Considerations in Dispensing Conformal Coatings

Technical Library | 1999-08-27 09:27:10.0

Conformal coating is a material that is applied to electronic products or assemblies to protect them from solvents, moisture, dust or other contaminants that may cause harm. Coating also prevents dendrite growth, which may result in product failure. This paper will discuss the variables that affect the application of conformal coatings, and review in detail those variables that impact the process of selective coating of printed circuit boards.

ASYMTEK Products | Nordson Electronics Solutions

Guidelines/recommendations "Drying of PCBs before soldering"

Technical Library | 2024-02-05 17:51:01.0

Objective:  Drying = reducing the humidity in PCB before soldering  Preventing delamination caused by thermal stress after moisture absorption Methods:  Drying in convection and/ or vacuum oven  Parameters subject to material type, soldering surface, layer count, time to soldering, layout (copper-plated areas)

ZVEI - German Electro and Digital Industry Association

What is the application of moisture proof dry cabinet?

Technical Library | 2019-04-11 05:59:57.0

Are your MSD safely stored? As humidity is found to be one of the key reasons for rejected products, many manufacturers are taking measures to control the humidity to increase their production efficiency and save the cost. In the industries of semi-conductor and electronics, the key section in which the rejected products are most probably to be made is that during the heating process of SMT, the IC(e.g.,PBGA,BGA,or TQFD) is likely to crack and thus cause non-effective welding because of the humidity. Climatest Symor® auto dry cabinet is the best solution to avoid the cracking and non#2;effective welding by dehumidifying the surface of your components. The dry unit can be used for 20 years without replacement,and controller is calibration free within 5 years.We attach dry cabinet application with different humidity range,welcome to download.

Symor Instrument Equipment Co.,Ltd

Controlling Moisture in Printed Circuit Boards

Technical Library | 2019-05-01 23:18:27.0

Moisture can accelerate various failure mechanisms in printed circuit board assemblies. Moisture can be initially present in the epoxy glass prepreg, absorbed during the wet processes in printed circuit board manufacturing, or diffuse into the printed circuit board during storage. Moisture can reside in the resin, resin/glass interfaces, and micro-cracks or voids due to defects. Higher reflow temperatures associated with lead-free processing increase the vapor pressure, which can lead to higher amounts of moisture uptake compared to eutectic tin-lead reflow processes. In addition to cohesive or adhesive failures within the printed circuit board that lead to cracking and delamination, moisture can also lead to the creation of low impedance paths due to metal migration, interfacial degradation resulting in conductive filament formation, and changes in dimensional stability. Studies have shown that moisture can also reduce the glass-transition temperature and increase the dielectric constant, leading to a reduction in circuit switching speeds and an increase in propagation delay times. This paper provides an overview of printed circuit board fabrication, followed by a brief discussion of moisture diffusion processes, governing models, and dependent variables. We then present guidelines for printed circuit board handling and storage during various stages of production and fabrication so as to mitigate moisture-induced failures.

CALCE Center for Advanced Life Cycle Engineering

Moisture Measurements in PCBs and Impact of Design on Desorption Behaviour

Technical Library | 2018-09-21 10:12:53.0

Moisture accumulates during storage and industry practice recommends specific levels of baking to avoid delamination. This paper will discuss the use of capacitance measurements to follow the absorption and desorption behaviour of moisture. The PCB design used in this work, focused on the issue of baking out moisture trapped between copper planes. The PCB was designed with different densities of plated through holes and drilled holes in external copper planes, with capacitance sensors located on the inner layers. For trapped volumes between copper planes, the distance between holes proved to be critical in affecting the desorption rate. For fully saturated PCBs, the desorption time at elevated temperatures was observed to be in the order of hundreds of hours. Finite difference diffusion modelling was carried out for moisture desorption behaviour for plated through holes and drilled holes in copper planes. A meshed copper plane was also modelled evaluating its effectiveness for assisting moisture removal and decreasing bake times. Results also showed, that in certain circumstances, regions of the PCB under copper planes initially increase in moisture during baking.

National Physical Laboratory

Instrumentation for Studying Real-time Popcorn Effect in Surface Mount Packages during Solder Reflow

Technical Library | 2014-06-12 16:40:19.0

Occurrence of popcorn in IC packages while assembling them onto the PCB is a well known moisture sensitive reliability issues, especially for surface mount packages. Commonly reflow soldering simulation process is conducted to assess the impact of assembling IC package onto PCB. A strain gauge-based instrumentation is developed to investigate the popcorn effect in surface mount packages during reflow soldering process. The instrument is capable of providing real-time quantitative information of the occurrence popcorn phenomenon in IC packages. It is found that the popcorn occur temperatures between 218 to 241°C depending on moisture soak condition, but not at the peak temperature of the reflow process. The presence of popcorn and delamination are further confirmed by scanning acoustic tomography as a failure analysis.

WASET - World Academy of Science, Engineering and Technology

Reactivity Of No-Clean Flux Residues Trapped Under Bottom Terminated Components

Technical Library | 2017-07-20 15:18:15.0

As electronic devices increase functionality in smaller form factors, there will be limitations, obstacles and challenges to overcome. Advances in component technology can create issues that may have time delayed effects. One such effect is device failure due to soldering residues trapped under bottom terminated components. If the residues trapped under the component termination are active and can be mobilized with moisture, there is the potential for ion mobilization causing current leakage.

Kester

An Investigation into Alternative Methods of Drying Moisture Sensitive Devices

Technical Library | 2021-11-26 14:34:07.0

The use of desiccant bags filled with Silica Sand and or Clay beads used in conjunction with a Moisture Barrier Bag to control moisture for storage of printed circuit boards has long been an accepted practice and standard from both JEDEC and IPC organizations. Additionally, the use heated ovens for baking off moisture using the evaporation process has also been a long#2;standing practice from these organizations. This paper on alternative drying methods will be accompanied by completed independent, unbiased tests conducted by Vinny Nguyen, an engineering student (now graduated) from San Jose State University. The accompanied paper will examine the performance levels of different technologies of desiccant bags to control moisture in enclosed spaces. The tests and equipment set were reviewed by an engineer and consultant to the Lockheed Martin Aerospace Division and the IPC - TM-650 2.6.28 test method was review by engineer from pSemi. The tests were designed to mimic performance tests outlined in Mil Spec 3464, which both IPC and JEDEC have adopted for their respective standards. The test examined variables including absorption capacity rates, weight gain and release of moisture back into the enclosed area. The presentation will also address and highlight: • Similarities of PCBs and Heavy Equipment as it applies to Inspections, Causes of Failure, Types of Corrosion and Moisture Collection Points. • Performance Attributes of Different Desiccant Technologies as it applies to shape, texture, change outs, labeling and regeneration. • Venn Diagram of Electromechanical Failure with the circles 1. Current 2. Contamination 3. Humidity Presentation Available

Steel Camel

High and Matched Refractive Index Liquid Adhesives for Optical Device Assembly

Technical Library | 2020-09-30 19:23:47.0

There is an increase in the number of optical sensors and cameras being integrated into electronics devices. These go beyond cell phone cameras into automotive sensors, wearables, and other smart devices. The applications can be lens bonding, waveguide imprinting, or other applications where the adhesive is in the optical pathway. To support these various optical applications, new materials with tailorable optical properties are required. There is often a mismatched refractive index between plastic lenses such as PC (Poly Carbonate), COP (Cyclo Olefin Polymer), COC (Cyclo Olefin Copolymer), PMMA (Poly Methyl Methacrylate), and UV curable liquid adhesive. A UV curable liquid adhesive is needed where you can alter the refractive index from 1.470 to 1.730, and maintain high optical performance as yellowness index, haze, and transmittance. This wide range of refractive index possibilities provides optimized optical design. Using particular plastic lens must consider how chemical attack is occurring during the process. Another consideration is that before the UV curable liquid adhesive is cured, chemical raw component can attack the plastic lens which then cracks and delaminates. We will also show engineering and reliability data which defined root cause and provided how optical performance is maintained under different reliability conditions.

Kyoritsu Chemical & Co., Ltd

Characterize and Understand Functional Performance Of Cleaning QFN Packages on PCB Assemblies

Technical Library | 2022-12-19 18:59:51.0

Material and Process Characterization studies can be used to quantify the harmful effects that might arise from solder flux and other process residues left on external surfaces after soldering. Residues present on an electronic assembly can cause unwanted electrochemical reactions leading to intermittent performance and total failure. Components with terminations that extend underneath the package can trap flux residue. These bottom terminated components are flush with the bottom of the device and can have small solderable terminations located along the perimeter sides of the package. The clearance between power and ground render high electrical forces, which can propagate electrochemical interactions when exposed to atmospheric moisture (harsh environments). The purpose of this research is to predict and understand the functional performance of residues present under single row QFN component packages. The objective of the research study is to develop and collect a set of guidelines for understanding the relationship between ionic contamination and electrical performance of a BTC component when exposed to atmospheric moisture and the trade-offs between electrical, ionic contamination levels, and cleanliness. Utilizing the knowledge gained from undertaking the testing of QFN components and associated DOE, the team will establish a reference Test Suite and Test Spec for cleanliness.

iNEMI (International Electronics Manufacturing Initiative)

  1 2 Next

moisture causing delamination searches for Companies, Equipment, Machines, Suppliers & Information