Technical Library: molded interconnect device (Page 1 of 3)

Throughput vs. Wet-Out Area Study for Package on Package (PoP) Underfill Dispensing

Technical Library | 2012-12-17 22:05:22.0

Package on Package (PoP) has become a relatively common component being used in mobile electronics as it allows for saving space in the board layout due to the 3D package layout. To insure device reliability through drop tests and thermal cycling as well as for protecting proprietary programming of the device either one or both interconnect layers are typically underfilled. When underfill is applied to a PoP, or any component for that matter, there is a requirement that the board layout is such that there is room for an underfill reservoir so that the underfill material does not come in contact with surrounding components. The preferred method to dispensing the underfill material is through a jetting process that minimizes the wet out area of the fluid reservoir compared to traditional needle dispensing. To further minimize the wet out area multiple passes are used so that the material required to underfill the component is not dispensed at once requiring a greater wet out area. Dispensing the underfill material in multiple passes is an effective way to reduce the wet out area and decrease the distance that surrounding components can be placed, however, this comes with a process compromise of additional processing time in the underfill dispenser. The purpose of this paper is to provide insight to the inverse relationship that exists between the wet out area of the underfill reservoir and the production time for the underfill process.

ASYMTEK Products | Nordson Electronics Solutions

Gold Stud Bump Flip Chip Bonding on Molded Interconnect Devices

Technical Library | 2015-09-23 22:08:32.0

A molded interconnect device (MID) is an injection molded thermoplastic substrate which incorporates a conductive circuit pattern and integrates both mechanical and electrical functions. (...) Flip chip bonding of bare die on MID can be employed to fully utilize MID’s advantage in device miniaturization. Compared to the traditional soldering process, thermo-compression bonding with gold stud bumps provides a clear advantage in its fine pitch capability. However, challenges also exist. Few studies have been made on thermocompression bonding on MID substrate, accordingly little information is available on process optimization, material compatibility and bonding reliability. Unlike solder reflow, there is no solder involved and no “self-alignment,” therefore the thermo-compression bonding process is significantly more dependent on the capability of the machine for chip assembly alignment.

Flex (Flextronics International)

Approaches for additive manufacturing of 3D electronic applications

Technical Library | 2020-09-16 21:24:56.0

Additive manufacturing processes typically used for mechanical parts can be combined with enhanced technologies for electronics production to enable a highly flexible manufacturing of personalized 3D electronic devices. To illustrate different approaches for implementing electrical and electronic functionality, conductive paths and electronic components were embedded in a powder bed printed substrate using an enhanced 3D printer. In addition, a modified Aerosol Jet printing process and assembly technologies adapted from the technology of Molded Interconnect Devices were applied to print circuit patterns and to electrically interconnect components on the surface of the 3D substrates.

Institute for Factory Automation and Production Systems (FAPS)

Solder Joint Encapsulant Adhesive Pop TMV High Reliability And Low Cost Assembly Solution

Technical Library | 2014-06-02 11:03:45.0

With the advancement of the electronic industry, package on package (POP) has become increasingly popular IC package for electronic devices, particularly POP TMV (Through Mold Vials) in mobile devices due to its benefits of miniaturization, design flexibility and cost efficiency. However, there are some issues that have been reported such as SIR drop due to small gap between top and bottom components, difficulty underfilling and rework due to stacked IC components and process yield issues. Some suppliers have reported using some methods such as dipping epoxy paste or epoxy flux to address these issues, but so far no customer has reported using these methods or materials in their mass production. In order to address these issues for POP TMV assembly, YINCAE has successfully developed and commercialized the first individual solder joint encapsulant adhesive for mass production for years.

YINCAE Advanced Materials, LLC.

Handling of Highly-Moisture Sensitive Components - An Analysis of Low-Humidity Containment and Baking Schedules

Technical Library | 2022-09-12 14:07:47.0

Unique component handling issues can arise when an assembly factory uses highly-moisture sensitive surface mount devices (SMDs). This work describes how the distribution of moisture within the molded plastic body of a SMD is an important variable for survivability. JEDEC/IPC [1] moisture level rated packages classified as Levels 4-5a are shown to require additional handling constraints beyond the typical out-of-bag exposure time tracking. Nitrogen or desiccated cabinet containment is shown as a safe and effective means for long-term storage provided the effects of prior out-of-bag exposure conditions are taken into account. Moisture diffusion analyses coupled with experimental verification studies show that time in storage is as important a variable as floor-life exposure for highly-moisture sensitive devices. Improvements in floor-life survivability can be obtained by a handling procedure that includes cyclic storage in low humidity containment. SMDs that have exceeded their floor-life limits are analyzed for proper baking schedules. Optimized baking schedules can be adopted depending on a knowledge of the exposure conditions and the moisture sensitivity level of the device.

Alcatel-Lucent

Analysis of Inspection of DPA Test Requirements Applied To Flip Chip Technologies

Technical Library | 2020-01-22 22:52:02.0

Flip chip assembly techniques bring a wide range of benefits: Reduced parasitic interconnection between the semiconductor die and package. Provides a high final assembly integrity density. Minimize the interconnection length, providing better electrical performances, especially for high speed signals. Reduce the device size and weight,…, etc. But there is no dedicated inspection requirements nor DPA standard which address all the necessary aspects associated to this construction type or only cover partially the topics to be inspected.

ALTER TECHNOLOGY

Laser Direct Imaging of Tracks on PCB Covered With Laser Photoresist

Technical Library | 2008-04-15 14:43:08.0

The increasing demands for miniaturization and better functionality of electronic components and devices have a significant effect on the requirements facing the printed circuit board (PCB) industry. PCB manufactures are driving for producing high density interconnect (HDI) boards at significantly reduced cost and reduced implementation time. The interconnection complexity of the PCB is still growing and today calls for 50/50 μm or 25/25 μm technology are real. Existing technologies are unable to offer acceptable solution. Recently the Laser Direct Imaging (LDI) technology is considered as an answer for these challenges.

Unipress - Institute of High Pressure Physics of the Polish Academy of Sciences

Flexible Hybrid Electronics: Direct Interfacing of Soft and Hard Electronics for Wearable Health Monitoring

Technical Library | 2021-08-18 01:30:18.0

The interfacing of soft and hard electronics is a key challenge for flexible hybrid electronics. Currently, a multisubstrate approach is employed, where soft and hard devices are fabricated or assembled on separate substrates, and bonded or interfaced using connectors; this hinders the flexibility of the device and is prone to interconnect issues. Here, a single substrate interfacing approach is reported, where soft devices, i.e., sensors, are directly printed on Kapton polyimide substrates that are widely used for fabricating flexible printed circuit boards (FPCBs).

University of California Berkeley

Introduction to Automated Test Fixtures

Technical Library | 2022-05-02 21:35:53.0

Testing of electronic assemblies involves three elements: the device under test, test equipment, and fixturing to make the connections between them. The challenge for a test engineer building a sophisticated test system is that instrumentation may need to measure thousands of test points through the mechanical interconnect.

Circuit Check, Inc.

Test Structures for Benchmarking the Electrostatic Discharge (ESD) Robustness of CMOS Technologies

Technical Library | 1999-08-05 10:34:17.0

This document defines a set of standard test structures with which to benchmark the electrostatic discharge (ESD) robustness of CMOS technologies. The test structures are intended to be used to evaluate the elements of an integrated circuit in the high current and voltage ranges characteristic of ESD events. Test structures are given for resistors, diodes, MOS devices, interconnects, silicon control rectifiers, and parasitic devices. The document explains the implementation strategy and the method of tabulating ESD robustness for various technologies.

SEMATECH

  1 2 3 Next

molded interconnect device searches for Companies, Equipment, Machines, Suppliers & Information

Sell Your Used SMT & Test Equipment

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
Conductive Adhesive & Non-Conductive Adhesive Dispensing

Software for SMT placement & AOI - Free Download.
Void Free Reflow Soldering

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
Voidless Reflow Soldering

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...