Technical Library | 2024-06-19 14:23:36.0
These guidelines on long-term storage are intended to help develop a supply strategy for components which need to be warehoused, processed and used beyond ...
Technical Library | 2022-03-02 20:51:50.0
The effect of long-term storage on manufacturability and reliability is an area of major concern for companies that attempt to proactively manage component availability and obsolescence. A number of issues can arise depending on the technology and storage environment. Mechanisms of concern can include solderability, stress driven diffusive voiding, kirkendahl voiding, and tin whiskering. Of all of these, solderability / wettability remains the number one challenge in longterm storage.
Technical Library | 2019-04-07 22:47:46.0
How to protect your PCB from moisture related damage? J-STD-033 put forward stricter regulation on the MSD exposure environment,when the exposure time exceed the tolerated,the moisture will penetrate into electronics,Moreover, the newest RoHS regulation will rise soldering temperature,the sudden high temperature will lead to expansion and cracking on electronic components. In order to decrease the moisture defect on PCB for the manufacturers in China,Climatest Symor® begin to concentrated on electronic dry cabinet R&D since early 1990s,we specialize in handling temperature and humidity for 20 years,and we provide best solution for PCB storage.
Technical Library | 2009-12-03 14:27:29.0
This paper provides additional data in support of shelf life extension for BGA and Die Size BGA (DSBGA) Packages.
Technical Library | 2009-12-03 12:51:58.0
Each year the semiconductor industry routes a significant volume of devices to recycling sites for no reliability or quality rationale beyond the fact that those devices were stored on a warehouse shelf for two years. This study identifies the key risks attributed to extended storage of devices in uncontrolled indoor environments and the risk mitigation required to permit safe shelf-life extension.
Technical Library | 2024-06-19 15:23:54.0
Each year the semiconductor industry routes a significant volume of devices to recycling sites for no reliability or quality rationale beyond the fact that those devices were stored on a warehouse shelf for two years. This study identifies the key risks attributed to extended storage of devices in uncontrolled indoor environments and the risk mitigation required to permit safe shelf-life extension. Component reliability was evaluated after extended storage to assure component solderability, MSL stability and die surface integrity. Packing materials were evaluated for customer use parameters as well as structural integrity and ESD properties. Results show that current packaging material (mold compound and leadframe) is sufficiently robust to protect the active integrated circuits for many decades and permit standard reflow solder assembly beyond 15 years. Standard packing materials (bags, desiccant, and humidity cards) are robust for a 32 month storage period that can be extended by repacking with fresh materials. Packing materials designed for long term storage are effective for more than five years.
Technical Library | 2022-03-02 21:52:34.0
In today's consumer-driven electronic marketplace many products have a limited useful life and component suppliers are moving to shorter product lifecycles. However, there are several industries that require semiconductor components to have a much longer lifecycle. In many cases application lifecycles within the Industrial, Automotive, Medical, Aerospace and Defense sectors may extend up to 30 years or more. As a result, an ongoing component supply becomes critical to sustaining these applications throughout their useful lifecycle. For this reason, it is often a requirement that semiconductor components be stored for extended periods of time after production ends.
Technical Library | 2022-09-12 14:07:47.0
Unique component handling issues can arise when an assembly factory uses highly-moisture sensitive surface mount devices (SMDs). This work describes how the distribution of moisture within the molded plastic body of a SMD is an important variable for survivability. JEDEC/IPC [1] moisture level rated packages classified as Levels 4-5a are shown to require additional handling constraints beyond the typical out-of-bag exposure time tracking. Nitrogen or desiccated cabinet containment is shown as a safe and effective means for long-term storage provided the effects of prior out-of-bag exposure conditions are taken into account. Moisture diffusion analyses coupled with experimental verification studies show that time in storage is as important a variable as floor-life exposure for highly-moisture sensitive devices. Improvements in floor-life survivability can be obtained by a handling procedure that includes cyclic storage in low humidity containment. SMDs that have exceeded their floor-life limits are analyzed for proper baking schedules. Optimized baking schedules can be adopted depending on a knowledge of the exposure conditions and the moisture sensitivity level of the device.
1 |