Technical Library | 2022-04-28 06:42:19.0
I. Chip capacitors(MLCC) The full name of chip capacitors: multilayer (multilayer, laminated) chip ceramic capacitors, also known as chip capacitors, chip capacitance.
Technical Library | 2023-01-10 20:15:42.0
Over the past years there has been consistent growth in the use of electroless nickel / immersion gold (ENIG) as a final finish. The finish is now frequently being used for PBGA, CSP, QFP and COB and more recently gathered considerable interest as a low cost under-bump metallization for flip chip bumping application. One of the largest users for this finish has been the telecommunication industry, were millions of square meters of PCBs with ENIG have been successfully used. The nickel layer offers advantages such as multiple soldering cycles and hand reworks without copper dissolution being a factor. The nickel also acts as a reinforcement to improve through-hole and blind micro via thermal integrity. In addition the nickel layer offers advantages such as co-planarity, Al-wire bondability and the use as contact surface for keypads or contact switching. Especially those pads, which are not covered by solder need a protective coating in corrosive environment – such as high humidity or pollutant gas.
Technical Library | 2013-01-18 02:42:14.0
ENIG (Electroless Nickel/Immersion Gold) is to deposit nickel gold plating which has good solderability, wear resistance , leveling appearance and small electric resistance. It included 4 steps that are pretreatment, immersion nickel, immersion gold and Post treatment...
Technical Library | 2018-07-11 22:46:13.0
For a demanding automotive electronics assembly, a highly thermal fatigue resistant solder alloy is required, which makes the lead-free Sn-Ag-Cu type solder alloy unusable. Sn-Ag-Bi-In solder alloy is considered as a high reliability solder alloy due to significant improvement in thermal fatigue resistance as compared to a standard Sn-Ag-Cu alloy. The alloy has not only good thermal fatigue properties but it also has superior ductility and tensile strength by appropriate addition of In; however, initial results indicated a sub-par performance in joint reliability when it is soldered on a printed circuit board (PCB) with Electroless Nickel Immersion Gold (ENIG) surface finish. Numerous experiments were performed to find out appropriate alloying element which would help improve the performance on ENIG PCBs. Sn-Ag-Bi-In solder alloys with and without Cu additions were prepared and then tests were carried out to see the performance in a thermal fatigue test and a drop resistance test.to investigate the impact of Cu addition towards the improvement of joint reliability on ENIG finish PCB. Also, the mechanism of such improvement is documented.
Technical Library | 2012-10-11 19:50:09.0
First published in the 2012 IPC APEX EXPO technical conference proceedings. This paper shows the benefits by using a pure palladium Layer in the ENEPIG (Electroless Nickel, Electroless Palladium, Immersion Gold) and ENEP (Electroless Nickel, Electroless P
Technical Library | 2020-11-15 21:01:24.0
ENIG, electroless nickel immersion gold is now a well-regarded finish used to enhance and preserve the solder-ability of copper circuits. EPIG, electroless palladium immersion gold, is a new surface finish also for enhancing and preserving solder-ability but with the advantage of eliminating Electroless Nickel from the deposit layer. This feature has become increasingly important with the increasing use of high frequeny PWB designs whereby nickel's magnetic properties are detrimental. We examine these two finishes and their respective soldering characteristics as plated and after steam aging and offer an explanation for the performance deviation.
Technical Library | 2015-03-26 19:16:03.0
Nickel-palladium-gold-finished terminals are susceptible to creep corrosion. Excessive creep corrosion can result in device failure due to insulation resistance loss between adjacent terminals. The mixed flowing gas test has been demonstrated to produce creep corrosion on parts with nickel-palladium-gold finished terminals. Conformal coats are often used to protect printed wiring assemblies from failure due to moisture and corrosion. However, coating may not be sufficient to protect lead terminations from failure.In this study, acrylic, silicone, urethane, parylene, and atomic layer deposit (ALD) coatings were examined for their effectiveness at preventing corrosion of nickel-palladium-gold-finished terminals.
Technical Library | 2017-03-09 17:37:05.0
This article focuses on the fabrication and characterization of stretchable interconnects for wearable electronics applications. Interconnects were screen-printed with a stretchable silver-polymer composite ink on 50-μm thick thermoplastic polyurethane. The initial sheet resistances of the manufactured interconnects were an average of 36.2 mΩ/◽, and half the manufactured samples withstood single strains of up to 74%. The strain proportionality of resistance is discussed, and a regression model is introduced. Cycling strain increased resistance. However, the resistances here were almost fully reversible, and this recovery was time-dependent. Normalized resistances to 10%, 15%, and 20% cyclic strains stabilized at 1.3, 1.4, and 1.7. We also tested the validity of our model for radio-frequency applications through characterization of a stretchable radio-frequency identification tag.
Technical Library | 2020-11-15 21:22:11.0
The latest highest reliability requirements demand a high performance electroless nickel and immersion gold (HP ENIG). The new IPC specification 4552A has refocused the industry with reference to nickel corrosion. The interpretation of the existing specification, that judges corrosion on 3 levels, is complex and if misinterpreted can lead to phantom failures. An obvious way to avoid any potential misinterpretation is to eradicate any evidence of corrosion completely.
Technical Library | 2017-09-07 13:56:11.0
As a surface finish for PCBs, Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) was selected over Electroless Nickel/Immersion Gold (ENIG) for CMOS image sensor applications with both surface mount technology (SMT) and gold ball bonding processes in mind based on the research available on-line. Challenges in the wire bonding process on ENEPIG with regards to bondability and other plating related issues are summarized.