Technical Library: non-destructive test (Page 1 of 1)

Considerations for Minimizing Radiation Doses to Components during X-ray Inspection

Technical Library | 2022-02-21 19:49:16.0

The ability to undertake non-destructive testing on semiconductor devices, during both their manufacture and their subsequent use in printed circuit boards (PCBs), has become ever more important for checking product quality without compromising productivity. The use of x-ray inspection not only provides a potentially non-destructive test but also allows investigation within optically hidden areas, such as the wire bonding within packages and the quality of post solder reflow of area array devices (e.g. BGAs, CSPs and flip chips).

Nordson DAGE

Comparing Digital and Analogue X-ray Inspection for BGA, Flip Chip and CSP Analysis

Technical Library | 2023-11-20 18:49:11.0

Non-destructive testing during the manufacture of printed wiring boards (PWBs) has become ever more important for checking product quality without compromising productivity. Using x-ray inspection, not only provides a non-destructive test but also allows investigation within optically hidden areas, such as the quality of post solder reflow of area array devices (e.g. BGAs, CSPs and flip chips). As the size of components continues to diminish, today's x-ray inspection systems must provide increased magnification, as well as better quality x-ray images to provide the necessary analytical information. This has led to a number of x-ray manufacturers offering digital x-ray inspection systems, either as standard or as an option, to satisfy these needs. This paper will review the capabilities that these digital x-ray systems offer compared to their analogue counterparts. There is also a discussion of the various types of digital x-ray systems that are available and how the use of different digital detectors influences the operational capabilities that such systems provide.

Nordson DAGE

Investigation of Pad Cratering in Large Flip-Chip BGA using Acoustic Emission

Technical Library | 2013-01-03 20:27:54.0

Electronics assemblies with large flip-chip BGA packages can be prone to either pad cratering or brittle intermetallic (IMC) failures under excessive PCB bending. Pad cratering cracks are not detected by electrical testing or non-destructive inspection methods, yet they pose a long term reliability risk since the cracks may propagate under subsequent loads to cause electrical failure. Since the initiation of pad cratering does not result in an instantaneous electrical signature, detecting the onset of this failure has been challenging. An acoustic emission methodology was recently developed by the authors to detect the onset of pad cratering. The instantaneous release of elastic energy associated with the initiation of an internal crack, i.e., Acoustic Emission (AE), can be monitored to accurately determine the onset of both pad cratering and brittle intermetallic (IMC) failures.

Cisco Systems, Inc.

Cleaning Flux Residue under Leadless Components using Objective Evidence to Determine Cleaning Performance

Technical Library | 2019-08-14 22:20:55.0

Cleanliness is a product of design, including component density, standoff height and the cleaning equipment’s ability to deliver the cleaning agent to the source of residue. The presence of manufacturing process soil, such as flux residue, incompletely activated flux, incompletely cured solder masks, debris from handling and processing fixtures, and incomplete removal of cleaning fluids can hinder the functional lifetime of the product. Contaminates trapped under a component are more problematic to failure. Advanced test methods are needed to obtain "objective evidence" for removing flux residues under leadless components.Cleaning process performance is a function of cleaning capacity and defined cleanliness. Cleaning performance can be influenced by the PCB design, cleaning material, cleaning machine, reflow conditions and a wide range of process parameters.This research project is designed to study visual flux residues trapped under the bottom termination of leadless components. This paper will research a non-destructive visual method that can be used to study the cleanability of solder pastes, cleaning material effectiveness for the soil, cleaning machine effectiveness and process parameters needed to render a clean part.

KYZEN Corporation

  1  

non-destructive test searches for Companies, Equipment, Machines, Suppliers & Information