Technical Library | 2023-08-14 09:06:53.0
In the operation of SMT mounter, the process and integrity of the nozzle of the mounter will have a significant impact on the performance of the machine. As one of the important components of the SMT machine, it is necessary for us to carry out daily maintenance and upkeep of the SMT nozzle. To ensure that the suction nozzle of the SMT machine is intact before operation, how should we do a good job of maintaining the suction nozzle of the SMT machine during normal use? KINGSUN technical team analysis operation has the following main points: 1.Wipe the surface of the SMT nozzle with a dust-free cloth. 2.The small aperture nozzle can be passed through with a thin steel wire and then blown with an air gun. 3.The surface of the nozzle should not be soaked with corrosive solution such as alcohol, as this may cause the surface to fall off. 4.HOLDER should use a cotton swab to wipe the cavity and not damage the filter screen. 5.Regular addition of special grease to HOLDER claws. 6.According to production, it is best to regularly maintain and do other maintenance regularly. (* Suitable for Yamaha SMT machine nozzles , JUKI SMT machine nozzles, Samsung SMT machine nozzles, Panasonic SMT machine nozzles, Fuji SMT machine nozzles, Siemens SMT machine nozzles etc.) Regarding the SMT machine nozzle daily maintenance operation instructions, KINGSUN share with you here , hoping to be helpful to you. More information about Products please Contact US at jenny@ksunsmt.com or visit www.ksunsmt.com , thanks.
Technical Library | 2015-07-16 17:24:23.0
Qualification of electronic hardware from a corrosion resistance standpoint has traditionally relied on stressing the hardware in a variety of environments. Before the development of tests based on mixed flowing gas (MFG), hardware was typically exposed to temperature-humidity cycling. In the pre-1980s era, component feature sizes were relatively large. Corrosion, while it did occur, did not in general degrade reliability. There were rare instances of the data center environments releasing corrosive gases and corroding hardware. One that got a lot of publicity was the corrosion by sulfur-bearing gases given off by data center carpeting. More often, corrosion was due to corrosive flux residues left on as-manufactured printed circuit boards (PCBs) that led to ion migration induced electrical shorting. Ion migration induced failures also occurred inside the PCBs due to poor laminate quality and moisture trapped in the laminate layers.
Technical Library | 2021-06-15 18:40:53.0
The jet printing of a dense mixed non-Newtonian suspension is based on the rapid displacement of fluid through a nozzle, the forming of a droplet and eventually the break-off of the filament. The ability to model this process would facilitate the development of future jetting devices. The purpose of this study is to propose a novel simulation framework and to show that it captures the main effects such as droplet shape, volume and speed. In the framework, the time dependent flow and the fluid-structure interaction between the suspension, the moving piston and the deflection of the jetting head is simulated. The system is modelled as a two phase system with the surrounding air being one phase and the dense suspension the other. Hence, the non-Newtonian suspension is modelled as a mixed single phase with properties determined from material testing. The simulations were performed with two coupled in-house solvers developed at Fraunhofer-Chalmers Centre; IBOFlow, a multiphase flow solver and LaStFEM, a large strain FEM solver. Jetting behaviour was shown to be affected not only by piston motion and fluid rheology, but also by the energy loss in the jetting head. The simulation results were compared to experimental data obtained from an industrial jetting head.
Fraunhofer-Chalmers Research Centre for Industustrial Mathematics
1 |