Technical Library: nsm-450 lead-free wave soldering (Page 1 of 2)

A Study of Lead-Free Wave Soldering

Technical Library | 2007-05-02 15:00:17.0

This brief study of lead-free wave soldering focuses upon copper dissolution and solder maintenance issues. Unfortunately, it is determined that waste and changeover costs can dramatically increase with lead-free wave soldering.

AIM Solder

Effect of Contact Time on Lead-Free Wave Soldering

Technical Library | 2008-08-28 22:50:11.0

The increasing use of lead-free solder has introduced a new set of process parameters when setting up wave solder equipment for effective soldering. Determining the proper flow characteristics of the solder wave for adequate hole fill is an essential step in achieving a reliable process. A variety of solder waves exist in the industry; each with advantages and disadvantages when performing lead-free wave soldering. One way to ensure adequate hole-fill is by increasing contact time at the Chip Wave.

Speedline Technologies, Inc.

Quieting the Noise: Quality Wave Soldering Depends on Control of Its Many Parameters.

Technical Library | 2008-01-24 16:19:43.0

The wave solder process is characterized by a large number of process parameters. To understand them all and their interactions is challenging, particularly when it comes to lead-free soldering. Wave soldering has a number of sub-processes, which include fluxing, preheating, soldering and cooling.

Vitronics Soltec

Liquid Tin Corrosion and Lead Free Wave Soldering

Technical Library | 2008-02-12 22:52:41.0

Corrosion of solder pots and solder pot components in wave soldering equipment has been reduced with the introduction of corrosion resistant coatings and improved lead free solder alloys. The latest trends in protecting wave solder machine components from liquid metal corrosion by lead free solder alloys will be presented in order to provide guidelines for evaluating existing equipment as well as for purchasing new systems.

Speedline Technologies, Inc.

Lead-free Wave Soldering of Simple to Highly Complex Boards. Process Optimization

Technical Library | 2008-01-10 19:24:48.0

This research takes an in-depth look at the challenges encountered in developing a lead free wave soldering process based on the specific products as well as on specific materials. It attempts to provide the reader with the information necessary to make educated decisions in selecting materials and controlling various process parameters in order to execute a rational implementation strategy for a reliable and robust lead free wave soldering process.

Vitronics Soltec

Selection Of Wave Soldering Fluxes For Lead-Free Assembly

Technical Library | 2008-07-10 12:52:18.0

This paper reviews the J-STD-004 and how it is used in flux categorization and selection. It also discusses the major types of flux formulations available, and the design, process and reliability implications of using each type. The purpose of the paper is to help the reader make an informed choice when selecting wave solder fluxes for lead-free processing.

Cookson Electronics

Equipment Impacts of Lead Free Wave Soldering

Technical Library | 2003-04-18 12:05:57.0

The popular tin (Sn) rich lead free solders are causing severe corrosion to many of the materials used in today's Wave Solder systems. Users are experiencing higher maintenance frequency and reduced life of wave solder machine components. This paper describes the effects of Sn rich solders in contact with various materials and discusses alternate methods to alleviate this problem.

Cookson Electronics

An Investigation into Lead-Free Low Silver Cored Solder Wire for Electronics Manufacturing Applications

Technical Library | 2019-01-09 19:19:52.0

The electronics industry has widely adopted Sn-3.0Ag-0.5Cu solder alloys for lead-free reflow soldering applications and tin-copper based alloys for wave soldering applications. In automated soldering or rework operations, users may work with Sn-Ag-Cu or Sn-Cu based alloys. One of the challenges with these types of lead-free alloys for automated / hand soldering operations, is that the life of the soldering iron tips will shorten drastically using lead-free solders with an increased cost of soldering iron tool maintenance/ tip replacement. Development was done on a new lead-free low silver solder rework alloy (Sn-0.3Ag-0.7Cu-0.04Co) in comparison with a number of alternative lead-free alloys including Sn-0.3Ag-0.7Cu, Sn-0.7Cu and Sn-3.0Ag-0.5Cu and tin-lead Sn40Pb solder in soldering evaluations.

Koki Company LTD

Water Soluble Solder Paste, Wet Behind the Ears or Wave of the Future

Technical Library | 2017-03-22 20:58:08.0

Water soluble lead-free solder paste is widely used in today’s SMT processes, but the industry is slowly moving away from water soluble solder pastes in favor of no-clean solder pastes. This shift in usage of solder paste is driven by an effort to eliminate the water wash process. Some components cannot tolerate water wash and elimination of water washing streamlines the SMT process. Despite this shift, certain applications lend themselves to the use of water soluble solder paste.This paper details the research and development of a new water soluble lead-free solder paste which improves on the performance characteristics of existing technologies.

FCT ASSEMBLY, INC.

High Reliability Lead-free Solder SN100C?Sn-0.7Cu-0.05Ni?Ge?

Technical Library | 2008-03-31 21:35:36.0

While the situation varies from country to country, nearly one year after the EU RoHS Directive came into force implementation of lead-free solder is progressing steadily. For lead-free soldering to be considered successful it is not sufficient just to have dealt with the challenges of mass production. It is also necessary to establish that the soldered joints produced are at least as reliable as those made with Sn-37Pb alloy. In this context "reliability" means the length of time in service that the initial functionality of the joint can be maintained. In this paper we will discuss some of the issues involved in solder joint reliability through a comparison of the properties of two alloys that are widely used for lead-free wave soldering, SAC305 (Sn-3.0Ag-0.5Cu) and the Sn, Cu, Ni, Ge alloy SN100C.

Nihon Superior Co., Ltd.

  1 2 Next

nsm-450 lead-free wave soldering searches for Companies, Equipment, Machines, Suppliers & Information

SMT feeders

High Precision Fluid Dispensers
2024 Eptac IPC Certification Training Schedule

Wave Soldering 101 Training Course
Software for SMT

World's Best Reflow Oven Customizable for Unique Applications