Technical Library: one side down (Page 1 of 2)

Staking/Epoxy Adhesive Dispensing for Aerospace

Technical Library | 2023-08-16 18:48:50.0

One of our aerospace customers was looking to automate a few manual operations and asked for suggestions. This customer specializes in assemblies for inflight connectivity for commercial airlines and low orbit satellites. The dispensing process included the application of bonding to the sides of large and small components (4-axis) and the ability to cope with the changing viscosity during processing. The material used was EC-2216 B/A Two Part Epoxy and the largest board size was 12"x10"

GPD Global

Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA

Technical Library | 2023-11-09 08:53:45.0

Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA In the intricate realm of electronics manufacturing, selecting the ideal SMT conformal coating line can seem like a challenging quest. The pursuit of a solution that seamlessly integrates efficiency, reliability, and performance is the ultimate goal. In this article, we embark on a journey to unravel the secrets of a standard SMT conformal coating line, using a captivating visual guide as our compass. The Symphony Of Components In An SMT Conformal Coating Line Picture a finely orchestrated symphony, with each instrument playing a unique role in this PCB coating process. The star performers in this lineup include: Transfer Conveyor: These act as the stage where the PCB's journey begins. Think of them as the entry and exit points for your precious boards, allowing a smooth, choreographed dance through the line. 1st Coating Machine: As the first movement in this musical journey, this machine, partnered with the initial curing station, lays down the foundation – applying adhesive to one side of the PCB. Inspection Conveyor: After the initial curing, our inspectors take center stage, using these transfer stations to carefully evaluate the coating's quality. 1st Curing Oven: This is where the magic happens. The first curing oven solidifies the adhesive applied in the previous act, setting the tone for a flawless performance. Flipper Machine: The flipper machine takes the spotlight, gracefully turning the PCB to reveal its other side, ensuring both faces receive their share of adhesion. 2nd Coating Machine: With a newfound perspective, the second coating machine takes the stage, applying adhesive to the reverse side of the PCB. 2nd Curing Oven: The grand finale! The second curing oven brings our symphony to a breathtaking close, solidifying the adhesive applied in the second act, creating a harmonious, dual-sided masterpiece. Efficiency Meets Dual-Side Coating This SMT conformal coating line is like a well-choreographed ballet that requires at least two dancers. One stands at the front, carefully loading PCBs onto the stage, guiding them through the first act. After the flip, the second dancer carries them through the second act, with both sides perfectly coated, ensuring a flawless performance for applications requiring dual-sided adhesion. UV Curing Oven For Illuminating Results For applications that embrace UV-curable adhesives, our line includes UV curing ovens, adding a layer of brilliance to the process and ensuring an efficient solidification of adhesives. Transfer Stations With A Touch Of Magic Within this symphony, the transfer stations wear a touch of magic – the second and fourth stations feature enchanting blue glass covers illuminated by embedded LED lights. These stations offer operators a clear view of the adhesive quality, allowing for meticulous inspections. The blue glass covers also act as protective shields, guarding freshly coated PCBs from the ever-present dust fairies. Certified Excellence: European Standards And CE Certification Ensuring that our performance meets the highest standards, our entire ensemble adheres to stringent European safety standards and proudly boasts CE certification, a testament to compliance with safety, health, and environmental protection requirements. A Variety Of Coating Machines For Your Unique Needs Our lineup doesn't just feature one star, but an ensemble of coating machines, including models like I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. For an encore performance with detailed specifications of each model, please refer to our dedicated article. Additionally, for a captivating exploration of the right coating valve for your adhesive, please visit our comprehensive guide. Single-Sided PCB Coating For those who prefer a single board, our dedicated article on single-sided PCB coating is a spotlight on this specialized process. In the dynamic world of electronics manufacturing, our SMT conformal coating line stands as a versatile and reliable performance. With dual-sided coating capabilities, adherence to European safety standards, and CE certification, we offer a comprehensive platform for your coating needs. Join us in this symphony and explore our range of coating machines and accessories to enhance your conformal coating process. It's a performance that promises to leave you in awe!

I.C.T ( Dongguan ICT Technology Co., Ltd. )

On Oreology, the fracture and flow of "milk's favorite cookie® "

Technical Library | 2024-08-29 18:30:46.0

The mechanical experience of consumption (i.e., feel, softness, and texture) of many foods is intrinsic to their enjoyable consumption, one example being the habit of twisting a sandwich cookie to reveal the cream. Scientifically, sandwich cookies present a paradigmatic model of parallel plate rheometry in which a fluid sample, the cream, is held between two parallel plates, the wafers. When the wafers are counterrotated, the cream deforms, flows, and ultimately fractures, leading to separation of the cookie into two pieces. We introduce Oreology (/Oriːˈɒl@dʒi/), from the Nabisco Oreo for "cookie" and the Greek rheo logia for "flow study," as the study of the flow and fracture of sandwich cookies. Using a laboratory rheometer, we measure failure mechanics of the eponymous Oreo's "creme" and probe the influence of rotation rate, amount of creme, and flavor on the stress–strain curve and postmortem creme distribution. The results typically show adhesive failure, in which nearly all (95%) creme remains on one wafer after failure, and we ascribe this to the production process, as we confirm that the creme-heavy side is uniformly oriented within most of the boxes of Oreos. However, cookies in boxes stored under potentially adverse conditions (higher temperature and humidity) show cohesive failure resulting in the creme dividing between wafer halves after failure. Failure mechanics further classify the creme texture as "mushy." Finally, we introduce and validate the design of an open-source, three-dimensionally printed Oreometer powered by rubber bands and coins for encouraging higher precision home studies to contribute new discoveries to this incipient field of study

1st Place Machinery Inc.

Management of your company's PLC automation risk.

Technical Library | 2012-06-01 00:14:04.0

PLCs are the brains of your operation. When the PLC (Programmable Logic Controllers) is not functioning properly, lines shut down, plants shutdown, even city bridges and water stations could cease to operate. Thousands to millions could be lost by one li

Business Industrial Network

Horizontal Convection Reflow Technology Defined

Technical Library | 2009-12-23 16:55:08.0

Leading up to the development of lead-free soldering alloys, Horizontal Convection* was developed for the reflow process. Getting the correct temperature profile, with the narrow process window in lead-free applications, is now more important than ever. In each chamber or “zone”, air is circulated toward one side of the oven above the PCB and toward the opposite side of the oven below the PCB, forming a “cyclone” around the board. The forced air circulation results in a uniform temperature profile along the entire circuit board assembly. This technology is ideal for the precise profiles needed for lead free soldering.

DDM Novastar Inc

What Does Industry 4.0 Actually Deliver Today? Example Reflow.

Technical Library | 2021-08-04 18:41:30.0

Industry 4.0 is one of the most exciting developments in the manufacturing industry in decades. It promises vast improvements for both manufacturers and their customers. For some companies, however, it can be overwhelming, and it can be difficult with the current available information to understand exactly what the benefits will be in the average factory, and to calculate the return on the investment. Therefore, it may be helpful to bring the discussion down to a tangible level and to isolate one little part of the whole smart electronic assembly factory, namely reflow.

KIC Thermal

Challenges for Step Stencils with Design Guidelines for Solder Paste Printing

Technical Library | 2015-08-25 13:51:27.0

The stencil printing process is one of the most critical processes in the electronic production. Due to the requirement: "faster and smaller" it is necessary to place components with different paste volume close together without regard to solder paste printing. In our days it is no longer possible to control the solder paste volume only by adjustment of the aperture dimensions. The requirements of solder paste volumes for specific components are realized by different thicknesses of metal sheets in one stencil with so called step stencils. The step-down stencil is required when it is desirable to print fine-pitch devices using a thinner stencil foil, but print other devices using a thicker stencil foil. The paper presents the innovative technology of step-up and step-down stencils in a laser cutting and laser welding process. The step-up/step-down stencil is a special development for the adjustment of solder paste quantity, fulfilling the needs of placement and soldering. This includes the laser cutting and laser welding process as well as the resulting stencil characteristics and the potential of the printing process.

LaserJob

Characterization of No Clean Solderpaste Residues: The Relationship to In-Circuit Testing

Technical Library | 1999-05-07 11:24:21.0

Many manufacturers have now completed the conversion to no clean solder paste. Many factors governed this initial conversion, among those being cosmetics, solder ability, and process ability. In circuit testing or probing through no clean solder paste residues has topically not been a major factor in the conversion decision for several reasons. Due to board design, solder paste was only used on one side of the board and not subjected to testing...

Kester

Impact of FPC Fabrication Process on SMT Reliability

Technical Library | 2013-12-05 17:09:03.0

The functionality of electronic devices continues to increase at an extraordinary rate. Simultaneously consumers are expecting even more and in ever smaller packages. One enabler for shrinking electronics has been the flexible circuit board that allows the circuit board to fit a wide variety of shapes. Flexible printed circuits (FPC) have the capability to be very thin and can have unpackaged components directly attached using surface mount technology (SMT) and flip chip on flex technologies. Bare die can also be thinned and attached very close to the circuit board. However one caveat of high density flexible circuit boards with thin die is that they can be very fragile. The use of back side films and underfill can protect the die making circuits more robust. For underfill to work well it requires good adhesion to the circuit board which can mean that flux residues under the die normally must be removed prior to underfilling.

Starkey Hearing Technologies

Side Wettable Flanks for Leadless Automotive Packaging

Technical Library | 2023-08-04 15:38:36.0

The MicroLeadFrame® (MLF®)/Quad Flat No-Lead (QFN) packaging solution is extremely popular in the semiconductor industry. It is used in applications ranging from consumer electronics and communications to those requiring high reliability performance, such as the automotive industry. The wide acceptance of this packaging design is primarily due to its flexible form factors, size, scalability and thermal dissipation capabilities. The adaptation and acceptance of MLF/QFN packages in automotive high reliability applications has led to the development of materials and processes that have extended its capabilities to meet the performance and quality requirements. One of process developments that is enabling the success of the MLF/QFN within the automotive industry has been the innovation of side wettable flanks that provide the capability to inspect the package lead to printed circuit board (PCB) interfaces for reliable solder joints. Traditionally, through-board X-ray was the accepted method for detecting reliable solder joints for leadless packages. However, as PBC layer counts and routing complexities have increased, this method to detect well-formed solder fillets has proven ineffective and incapable of meeting the inspection requirements. To support increased reliability and more accurate inspection of the leadless package solder joints, processes to form side-wettable flanks have been developed. These processes enable the formation of solder fillets that are detectable using state-of-the-art automated optical inspection (AOI) equipment, providing increased throughput for the surface mount technology (SMT) processes and improved quality as well.

Amkor Technology, Inc.

  1 2 Next

one side down searches for Companies, Equipment, Machines, Suppliers & Information

2024 Eptac IPC Certification Training Schedule

World's Best Reflow Oven Customizable for Unique Applications
Software for SMT

High Throughput Reflow Oven
SMT feeders

High Precision Fluid Dispensers
PCB separator

"回流焊炉"