Technical Library | 2024-08-29 18:30:46.0
The mechanical experience of consumption (i.e., feel, softness, and texture) of many foods is intrinsic to their enjoyable consumption, one example being the habit of twisting a sandwich cookie to reveal the cream. Scientifically, sandwich cookies present a paradigmatic model of parallel plate rheometry in which a fluid sample, the cream, is held between two parallel plates, the wafers. When the wafers are counterrotated, the cream deforms, flows, and ultimately fractures, leading to separation of the cookie into two pieces. We introduce Oreology (/Oriːˈɒl@dʒi/), from the Nabisco Oreo for "cookie" and the Greek rheo logia for "flow study," as the study of the flow and fracture of sandwich cookies. Using a laboratory rheometer, we measure failure mechanics of the eponymous Oreo's "creme" and probe the influence of rotation rate, amount of creme, and flavor on the stress–strain curve and postmortem creme distribution. The results typically show adhesive failure, in which nearly all (95%) creme remains on one wafer after failure, and we ascribe this to the production process, as we confirm that the creme-heavy side is uniformly oriented within most of the boxes of Oreos. However, cookies in boxes stored under potentially adverse conditions (higher temperature and humidity) show cohesive failure resulting in the creme dividing between wafer halves after failure. Failure mechanics further classify the creme texture as "mushy." Finally, we introduce and validate the design of an open-source, three-dimensionally printed Oreometer powered by rubber bands and coins for encouraging higher precision home studies to contribute new discoveries to this incipient field of study
Technical Library | 2013-08-15 13:12:11.0
An automated visual PCB inspection is an approach used to counter difficulties occurred in human’s manual inspection that can eliminates subjective aspects and then provides fast, quantitative, and dimensional assessments. In this study, referential approach has been implemented on template and defective PCB images to detect numerous defects on bare PCBs before etching process, since etching usually contributes most destructive defects found on PCBs. The PCB inspection system is then improved by incorporating a geometrical image registration, minimum thresholding technique and median filtering in order to solve alignment and uneven illumination problem. Finally, defect classification operation is employed in order to identify the source for six types of defects namely, missing hole, pin hole, underetch, short-circuit, mousebite, and open-circuit.
Technical Library | 2020-03-04 23:53:17.0
Critical to maintaining quality control in high-throughput screening is the need for constant monitoring of liquid-dispensing fidelity. Traditional methods involve operator intervention with gravimetric analysis to monitor the gross accuracy of full plate dispenses, visual verification of contents, or dedicated weigh stations on screening platforms that introduce potential bottlenecks and increase the plate-processing cycle time. We present a unique solution using open-source hardware, software, and 3D printing to automate dispenser accuracy determination by providing real-time dispense weight measurements via a network-connected precision balance. This system uses an Arduino microcontroller to connect a precision balance to a local network. By integrating the precision balance as an Internet of Things (IoT) device, it gains the ability to provide real-time gravimetric summaries of dispensing, generate timely alerts when problems are detected, and capture historical dispensing data for future analysis. All collected data can then be accessed via a web interface for reviewing alerts and dispensing information in real time or remotely for timely intervention of dispense errors. The development of this system also leveraged 3D printing to rapidly prototype sensor brackets, mounting solutions, and component enclosures.
Technical Library | 2019-11-15 02:20:26.0
Material Aging Test-UV Weathering Test Chamber 1.What is UV aging? UV aging chambers use fluorescent ultraviolet lamp as light source to simulate UV radiation and condensation in natural sunlight, and to carry out accelerated weather resistance test in order to obtain the result of weather resistance of the material. UV aging detection is widely used in non-metallic materials, organic materials (such as coatings, paints, rubber, plastics and their products) under the change of sunlight, humidity, temperature, condensation and other climatic conditions to test the aging degree and situation of related products and materials. 2.Why we should do UV aging test? When the product is placed in the ambient environment, there will be different problems taken place, such as appearance changes, including cracking, speckle, powdering or color change, and even performance degradation,which may be due to the loss of components in the resin resulting in chemical bonds changes inside the molecular structure, this is mainly caused by sunlight, industrial exclusion of waste gas, bacteria and so on. The aging performance of the product directly affects the lifespan of the product, so aging test become significant,non-metallic materials, organic materials (such as paints, paints, rubber, plastics and their products) are subject to changes in sunlight, humidity, temperature, condensation and other climatic conditions to test the degree and condition of aging of related products and materials. The natural aging test is to put the plastic specimen under the sun exposure, and it is directly under the natural climate environment,to test the material performance under various factors such as light, heat energy, atmospheric humidity, oxygen and ozone, industrial pollution and the like, the most harsh climate condition should be selected,or near the actual application area of the material, the test site shall be open and flat, no obstacle to affect the test results,the specimen holder shall be facing the equator and at an angle of 45 ° from the ground. When the main performance index of the specimen has been reduced, the test s/b terminated when it achieve the minimum allowable use value . in most case,the test is terminated when the product primary performance index falls to 50% of the initial value. The natural aging process is a very slow process, and there is a great difference in different geographical conditions, which brings difficulties to evaluate the aging resistance of the product. It is an attempt to make an evaluation of the aging performance of the plastic in a shorter time,that is accelerated aging test. The accelerated aging test can be used to simulate the human light source of the fluorescent lamp, including the carbon arc lamp, the xenon arc lamp and the fluorescent ultraviolet lamp, and the artificial light sources can generate more light than the natural sunlight on the ground. When these artificial light sources are used, it is also common to use the combination of the condenser to simulate the rain drop, the dew and the like to conduct the aging test on the product.
Technical Library | 2019-10-03 14:27:01.0
Knowing how package warpage changes over temperature is a critical variable in order to assemble reliable surface mount attached technology. Component and component or component and board surfaces must stay relatively flat with one another or surface mount defects, such as head-in-pillow, open joints, bridged joints, stretched joints, etc. may occur. Initial package flatness can be affected by numerous aspects of the component manufacturing and design. However, change in shape over temperature is primarily driven by CTE mismatch between the different materials in the package. Thus material CTE is a critical factor in package design. When analyzing or modeling package warpage, one may assume that the package receives heat evenly on all sides, when in production this may not be the case. Thus, in order to understand how temperature uniformity can affect the warpage of a package, a case study of package warpage versus different heating spreads is performed.Packages used in the case study have larger form factors, so that the effect of non-uniformity can be more readily quantified within each package. Small and thin packages are less prone to issues with package temperature variation, due to the ability for the heat to conduct through the package material and make up for uneven sources of heat. Multiple packages and multiple package form factors are measured for warpage via a shadow moiré technique while being heated and cooled through reflow profiles matching real world production conditions. Heating of the package is adjusted to compare an evenly heated package to one that is heated unevenly and has poor temperature uniformity between package surfaces. The warpage is measured dynamically as the package is heated and cooled. Conclusions are drawn as to how the role of uneven temperature spread affects the package warpage.
1 |
Distributor of hot-sales and hard-to-find electronic and electromechanical components and supplies. Online catalogue, data sheets and purchasing. win-source.net
100 N HOWARD ST STE R
SPOKANE, WA USA
Phone: 086-755-83957766