Technical Library: optical and flexible and circuitry (Page 1 of 1)

Conformal Surface Plasmons Propagating on Ultrathin and Flexible Films

Technical Library | 2013-09-05 17:44:14.0

Surface plasmon polaritons (SPPs) are localized surface electromagnetic waves that propagate along the interface between a metal and a dielectric. Owing to their inherent subwavelength confinement, SPPs have a strong potential to become building blocks of a type of photonic circuitry built up on 2D metal surfaces; however, SPPs are difficult to control on curved surfaces conformably and flexibly to produce advanced functional devices. Here we propose the concept of conformal surface plasmons (CSPs), surface plasmon waves that can propagate on ultrathin and flexible films to long distances in a wide broadband range from microwave to mid-infrared frequencies.

Southeast University (SEU)

Coat-and-Print Patterning of Silver Nanowires for Flexible and Transparent Electronics

Technical Library | 2020-02-19 23:12:55.0

Silver nanowires (Ag NWs) possess excellent optoelectronic properties, which have led to many technology-focused applications of transparent and flexible electronics. Many of these applications require patterning of Ag NWs into desired shapes, for which mask-based and printing-based techniques have been developed and widely used. However, there are still several limitations associated to these techniques. These limitations, such as complicated patterning procedures, limited patterning area, and compromised optical transparency, hamper the efficient fabrication of high-performance Ag NW patterns. Here, we propose a coat-and-print approach for effectively patterning Ag NWs.

Integrated Microwave Packaging Antennas and Circuits Technology (IMPACT) Lab

Design and Integration of aWireless Stretchable Multimodal Sensor Network in a Composite Wing

Technical Library | 2020-10-08 00:55:22.0

This article presents the development of a stretchable sensor network with high signal-to-noise ratio and measurement accuracy for real-time distributed sensing and remote monitoring. The described sensor network was designed as an island-and-serpentine type network comprising a grid of sensor "islands" connected by interconnecting "serpentines." A novel high-yield manufacturing process was developed to fabricate networks on recyclable 4-inch wafers at a low cost. The resulting stretched sensor network has 17 distributed and functionalized sensing nodes with low tolerance and high resolution. The sensor network includes Piezoelectric (PZT), Strain Gauge(SG), and Resistive Temperature Detector (RTD) sensors. The design and development of a flexible frame with signal conditioning, data acquisition, and wireless data transmission electronics for the stretchable sensor network are also presented. The primary purpose of the frame subsystem is to convert sensor signals into meaningful data, which are displayed in real-time for an end-user to view and analyze. The challenges and demonstrated successes in developing this new system are demonstrated, including (a) developing separate signal conditioning circuitry and components for all three sensor types (b) enabling simultaneous sampling for PZT sensors for impact detection and (c)configuration of firmware/software for correct system operation. The network was expanded with an in-house developed automated stretch machine to expand it to cover the desired area. The released and stretched network was laminated into an aerospace composite wing with edge-mount electronics for signal conditioning, processing, power, and wireless communication.

Stanford University

  1  

optical and flexible and circuitry searches for Companies, Equipment, Machines, Suppliers & Information