Technical Library: optical inspection (Page 2 of 4)

What is really inside your AOI?

Technical Library | 2012-02-23 21:16:28.0

Installed for the first time 20 years ago, Automated Optical Inspection (AOI) more recently has become an essential part of our SMT environment. Today, most process engineers are turning to machines as an inspection strategy for addressing quality and pro

Vi TECHNOLOGY

Overcoming Logistic, Economic and Technical Challenges to Implementing Functional Test in High Mix / High Volume Production Environments

Technical Library | 2012-11-29 14:23:58.0

1000 units per day) production environment presents challenging technical, logistic and cost obstacles that are usually more complex than those encountered at the inspection (automated optical inspection) and the manufacturing process test step (in-circuit test).

SiFO Technologies

How Does 3D AOI Increase Manufacturing Quality?

Technical Library | 2017-08-28 17:14:41.0

PCB suppliers in the automotive space are vastly accelerating their time to market by using automated optical inspection (AOI) systems during PCB assembly. However, this next-generation technique is not limited in scope to the automotive industry – it has powerful implications for the entire PCB industry.

Power Design Services

AOI-AXI Duo Improves Product Yield

Technical Library | 2009-08-26 19:32:32.0

Automated optical inspection (AOI) and automated X-ray inspection (AXI) have been around for some time in various configurations and both have played a role in improving the quality of circuit boards. While some companies opt for one technology over the other, each form of inspection contributes its own unique benefit to the manufacturing process.

Nordson YESTECH

AOI Capabilities Study with 03015 Component

Technical Library | 2019-01-23 21:33:32.0

Automated Optical Inspection (AOI) is advantageous in that it enables defects to be detected early in the manufacturing process, reducing the Cost of Repair as the AOI systems identify the specific components that are failing removing the need for any additional test troubleshooting1-3. Because of this, more Electronic Contract Manufacturing Services (EMS) companies are implementing AOI into their SMT lines to minimize repair costs and maintain good process and product quality, especially for new component types. This project focuses on the testing of component package 03015 which is challenging for AOI.

Flex (Flextronics International)

An Automatic Optical Inspection System for the Diagnosis of Printed Circuits Based on Neural Networks

Technical Library | 2021-11-22 20:32:10.0

The aim of this work is to define a procedure to develop diagnostic systems for Printed Circuit Boards, based on Automated Optical Inspection with low cost and easy adaptability to different features. A complete system to detect mounting defects in the circuits is presented in this paper. A low cost image acquisition system with high accuracy has been designed to fit this application. Afterward, the resulting images are processed using the Wavelet Transform and Neural Networks, for low computational cost and acceptable precision. The wavelet space represents a compact support for efficient feature extraction with the localization property. The proposed solution is demonstrated on several defects in different kind of circuits.

Vienna University of Technology [TU Wien]

A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry

Technical Library | 2022-06-27 16:50:26.0

Electronics industry is one of the fastest evolving, innovative, and most competitive industries. In order to meet the high consumption demands on electronics components, quality standards of the products must be well-maintained. Automatic optical inspection (AOI) is one of the non-destructive techniques used in quality inspection of various products. This technique is considered robust and can replace human inspectors who are subjected to dull and fatigue in performing inspection tasks. A fully automated optical inspection system consists of hardware and software setups. Hardware setup include image sensor and illumination settings and is responsible to acquire the digital image, while the software part implements an inspection algorithm to extract the features of the acquired images and classify them into defected and non-defected based on the user requirements. A sorting mechanism can be used to separate the defective products from the good ones. This article provides a comprehensive review of the various AOI systems used in electronics, micro-electronics, and opto-electronics industries. In this review the defects of the commonly inspected electronic components, such as semiconductor wafers, flat panel displays, printed circuit boards and light emitting diodes, are first explained. Hardware setups used in acquiring images are then discussed in terms of the camera and lighting source selection and configuration. The inspection algorithms used for detecting the defects in the electronic components are discussed in terms of the preprocessing, feature extraction and classification tools used for this purpose. Recent articles that used deep learning algorithms are also reviewed. The article concludes by highlighting the current trends and possible future research directions.

Institute of Electrical and Electronics Engineers (IEEE)

Automated Optical Inspection Method for Light-Emitting Diode Defect Detection Using Unsupervised Generative Adversarial Neural Network

Technical Library | 2021-11-22 20:44:44.0

Many automated optical inspection (AOI) companies use supervised object detection networks to inspect items, a technique which expends tremendous time and energy to mark defectives. Therefore, we propose an AOI system which uses an unsupervised learning network as the base algorithm to simultaneously generate anomaly alerts and reduce labeling costs. This AOI system works by deploying the GANomaly neural network and the supervised network to the manufacturing system. To improve the ability to distinguish anomaly items from normal items in industry and enhance the overall performance of the manufacturing process, the system uses the structural similarity index (SSIM) as part of the loss function as well as the scoring parameters. Thus, the proposed system will achieve the requirements of smart factories in the future (Industry 4.0).

Shenzhen University

Using Automated 3D X-Ray Inspection to Detect BTC Defects

Technical Library | 2013-07-25 14:02:15.0

Bottom-termination components (BTC), such as QFNs, are becoming more common in PCB assemblies. These components are characterized by hidden solder joints. How are defects on hidden DFN joints detected? Certainly, insufficient solder joints on BTCs cannot be detected by manual visual inspection. Nor can this type of defect be detected by automated optical inspection; the joint is hidden by the component body. Defects such as insufficients are often referred to as "marginal" defects because there is likely enough solder present to make contact between the termination on the bottom-side of the component and the board pad for the component to pass in-circuit and functional test. Should the board be subjected to shock or vibration, however, there is a good chance this solder connection will fracture, leading to an open connection.

Flex (Flextronics International)

A Machine Vision Based Automatic Optical Inspection System for Measuring Drilling Quality of Printed Circuit Boards

Technical Library | 2024-04-29 21:39:52.0

In this paper, we develop and put into practice an Automatic Optical Inspection (AOI) system based on machine vision to check the holes on a printed circuit board (PCB). We incorporate the hardware and software. For the hardware part, we combine a PC, the three-axis positioning system, a lighting device and CCD cameras. For the software part, we utilize image registration, image segmentation, drill numbering, drill contrast, and defect displays to achieve this system. Results indicated that an accuracy of 5µm could be achieved in errors of the PCB holes allowing comparisons to be made. This is significant in inspecting the missing, the multi-hole and the incorrect location of the holes. However, previous work only focusses on one or other feature of the holes. Our research is able to assess multiple features: missing holes, incorrectly located holes and excessive holes. Equally, our results could be displayed as a bar chart and target plot. This has not been achieved before. These displays help users analyze the causes of errors and immediately correct the problems. Additionally, this AOI system is valuable for checking a large number of holes and finding out the defective ones on a PCB. Meanwhile, we apply a 0.1mm image resolution which is better than others used in industry. We set a detecting standard based on 2mm diameter of circles to diagnose the quality of the holes within 10 seconds.

National Cheng Kung University


optical inspection searches for Companies, Equipment, Machines, Suppliers & Information

INSPECTION TECH
INSPECTION TECH

Our Company handle AOI (Auto Optical Inspection) and SPI (Solder Paste Inspection) Machines.

Equipment Dealer / Broker / Auctions

Hwaseong-si, Gyeonggi-do, Korea
Hwaseong-si, South Korea

Phone: +82-1029254936