Technical Library: paste time (Page 1 of 3)

SMT007-MIRTEC Intelligent Factory Automation Article-November 2020

Technical Library | 2020-12-02 20:36:54.0

Industry 4.0 is a topic of much discussion within the electronics manufacturing industry. Manufacturers and vendors are trying to come to terms with what that means. In the most simplistic of terms, Industry 4.0 is a trend toward automation and data exchange within the manufacturing process. This basically requires connectivity and communication from machine to machine within the manufacturing line. The challenge is to collect data from each of the systems within the line and make that data available to the rest of the machines. Without test and inspection, there is no Industry 4.0. The whole purpose of test and inspection is to collect actionable data that may be used to reduce defects and maximize efficiency within the manufacturing line. The goal is to minimize scrap and get a really good handle on those process parameters that need to be put in place to manufacture products the right way the first time. For maximum efficiency, three inspection systems are required within the production line. These are solder paste inspection (SPI) post-solder deposition, automated optical inspection (AOI) post-placement, and AOI post-reflow. This requires a substantial investment; however, the combination of all three inspection machines is really the only true way to provide feedback for each stage of the manufacturing process.

MIRTEC Corp

Made in Japan: Solder Paste Jet Dispensing Machine

Technical Library | 2024-03-19 07:58:40.0

Introduction of Solder Paste Jet Dispensing Machine Step into the future of manufacturing with the Solder Paste Jet Dispensing Machine, meticulously crafted in Japan under the esteemed I.C.T brand. This cutting-edge equipment represents the pinnacle of precision engineering, delivering unrivaled performance and reliability. Let's dive into its exceptional features and applications. Transmission Structure System of Solder Paste Jet Dispensing Machine At the heart of this Solder Paste Jet Dispensing Machine lies a meticulously designed transmission structure system. Powered by X Y linear motor drive control, it achieves unprecedented precision in positioning. With a reciprocating position accuracy of 3σ±5um and a dynamic position accuracy of 3σ±3um across the X, Y, and Z axes, it ensures flawless execution of tasks with minimal deviation. The load-type gantry structure further enhances stability and accuracy, guaranteeing consistent performance even during high-speed operations. Advanced Function Configuration Flexibility and customization are the hallmarks of the Solder Paste Jet Dispensing Machine. It features a customizable platform tailored to meet the specific needs of diverse applications, ensuring optimal performance and efficiency. Additionally, the machine boasts advanced functionalities such as automatic correction of substrate warp height and real-time penetration monitoring. Equipped with dual cameras, it provides precise feedback for adjustments during the filling process, ensuring unmatched precision and quality. Function configuration.jpg Vision Non-stop Experience uninterrupted precision with the Vision Non-stop functionality of this machine. Capable of detecting 100 chips per second, it automatically identifies position and height deviations, enabling real-time compensation for coating actions. Dual compensation for path and glue amount further optimizes efficiency, minimizing waste and maximizing productivity. With its ability to print solder paste dots as small as 110um, it's perfectly suited for high-precision applications in ICs, BGAs, and beyond. Versatility in Configuration Options and Applications Adaptability is key in modern manufacturing, and the Solder Paste Jet Dispensing Machine delivers on all fronts. Offering a range of configuration options, including different valves tailored to various material viscosities and fluidity, it ensures optimal performance across diverse production scenarios. From semiconductor packages to LED back-end Mini-LED production, its versatility knows no bounds, making it an indispensable asset in a wide range of industries. Explore the Future of Manufacturing with I.C.T Join the ranks of industry leaders embracing the future of manufacturing with I.C.T's Solder Paste Jet Dispensing Machine. With its unrivaled precision, speed, and reliability, it's set to revolutionize your production processes and propel your business to new heights of success. Don't just keep up with the competition--surpass it with I.C.T's cutting-edge solutions. Unlock the Potential of Precision Manufacturing Delve deeper into the transformative power of precision manufacturing and discover how the Solder Paste Jet Dispensing Machine can unlock new possibilities for your business. From reducing production costs to improving product quality, the benefits are endless. Partner with I.C.T today and embark on a journey towards manufacturing excellence. Conclusion In conclusion, our Solder Paste Jet Dispensing Machine embodies the fusion of Japanese precision and I.C.T reliability, offering unparalleled efficiency in solder paste dispensing. With its advanced features and customizable options, it caters to the diverse needs of modern manufacturing processes. Experience the pinnacle of dispensing technology with our Solder Paste Jet Dispensing Machine. Overseas Technical Support by I.C.T At I.C.T, our commitment to customer satisfaction extends beyond the initial purchase. We provide comprehensive overseas technical support, including machine installation, debugging, and customer training. Our dedicated team ensures that your production line runs smoothly from the first product off the line to the seamless delivery of the machine. Partner with I.C.T today and elevate your manufacturing precision with our Solder Paste Jet Dispensing Machine. Contact us now to learn more about our solutions and take your production processes to new heights of efficiency and reliability.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Hand Printing using Nanocoated and other High End Stencil Materials

Technical Library | 2019-05-29 23:10:30.0

There are times when a PCB prototype needs to be built quickly to test out a design. In such cases where it is known early on that there will be multiple iterations or that a "one and done" assembly will be made that there will be some SMT assemblers who choose to hand print solder paste onto the board using a "frameless" stencil. In such cases where hand printing is used, the consistency of the printing technique has typically been in question. Furthermore, the effectiveness of both the nanocoatings as well as the higher end stainless steel materials, which have been heretofore studied in controlled printing environments, will be evaluated for their impact on the hand printing process.The purpose of the study was to determine the effectiveness of select nanocoating materials as well as certain high end stainless steel stencil materials as they relate to the manual SMT printing process. A variety of nanocoatings were applied to SMT metal stencils and solder paste volume measurements were taken to compare the effectiveness.

BEST Inc.

HALT Testing of Backward Soldered BGAs on a Military Product

Technical Library | 2015-11-19 18:15:07.0

The move to lead free (Pb-free) electronics by the commercial industry has resulted in an increasing number of ball grid array components (BGAs) which are only available with Pb-free solder balls. The reliability of these devices is not well established when assembled using a standard tin-lead (SnPb) solder paste and reflow profile, known as a backward compatible process. Previous studies in processing mixed alloy solder joints have demonstrated the importance of using a reflow temperature high enough to achieve complete mixing of the SnPb solder paste with the Pb-free solder ball. Research has indicated that complete mixing can occur below the melting point of the Pb-free alloy and is dependent on a number of factors including solder ball composition, solder ball to solder paste ratio, and peak reflow times and temperatures. Increasing the lead content in the system enables full mixing of the solder joint with a reduced peak reflow temperature, however, previous research is conflicting regarding the effect that lead percentage has on solder joint reliability in this mixed alloy solder joint.

Lockheed Martin Corporation

Recurrent Neural Network-Based Stencil Cleaning Cycle Predictive Modeling

Technical Library | 2023-06-12 18:33:29.0

This paper presents a real-time predictive approach to improve solder paste stencil printing cycle decision making process in surface mount assembly lines. Stencil cleaning is a critical process that influences the quality and efficiency of printing circuit board. Stencil cleaning operation depends on various process variables, such as printing speed, printing pressure, and aperture shape. The objective of this research is to help efficiently decide stencil printing cleaning cycle by applying data-driven predictive methods. To predict the printed circuit board quality level, a recurrent neural network (RNN) is applied to obtain the printing performance for the different cleaning aging. In the prediction model, not only the previous printing performance statuses are included, but also the printing settings are used to enhance the RNN learning. The model is tested using data collected from an actual solder paste stencil printing line. Based on the predicted printing performance level, the model can help automatically identify the possible cleaning cycle in practice. The results indicate that the proposed model architecture can predictively provide accurate solder paste printing process information to decision makers and increase the quality of the stencil printing process.

Binghamton University

Dispelling the Black Magic of Solder Paste

Technical Library | 2016-01-21 16:52:27.0

Solder paste has long been viewed as "black magic". This "black magic" can easily be dispelled through a solder paste evaluation. Unfortunately, solder paste evaluation can be a challenge for electronic assemblers. Interrupting the production schedule to perform an evaluation is usually the first hurdle. Choosing the solder paste properties to test is simple, but testing for these properties can be difficult. Special equipment or materials may be required depending upon the tests that are chosen. Once the testing is complete, how does one make the decision to choose a solder paste? Is the decision based on gut feel or hard data?This paper presents a process for evaluating solder pastes using a variety of methods. These methods are quick to run and are challenging, revealing the strengths and weaknesses of solder pastes. Methods detailed in this paper include: print volume, stencil life, response to pause, open time, tack force over time, wetting, solder balling, graping, voiding, accelerated aging, and others.

FCT ASSEMBLY, INC.

Tackling SMT Enemy Number One - Raising The Standard of Solder Paste Application

Technical Library | 2009-05-14 13:57:43.0

Is screen printing technology able to keep pace with rising quality demands and increasingly complex board layouts? Or, is new jet printing technology ready to fill the gap? A comparison study between the two methods reveals some interesting differences. Screen printers offer some possibilities for optimizing solder paste deposits, but optimization is far easier and quicker with the jet printer. At the same time, the ability to print individualized deposits on every single pcb pad may be the ultimate answer to the growing quality challenge.

Mycronic Technologies AB

Using Rheology Measurement As A Potentially Predictive Tool For Solder Paste Transfer Efficiency And Print Volume Consistency

Technical Library | 2020-07-02 13:29:37.0

Industry standards such as J-STD-005 and JIS Z 3284-1994 call for the use of viscosity measurement(s) as a quality assurance test method for solder paste. Almost all solder paste produced and sold use a viscosity range at a single shear rate as part of the pass-fail criteria for shipment and customer acceptance respectively. As had been reported many times, an estimated 80% of the defects associated with the surface mount technology process involve defects created during the printing process. Viscosity at a single shear rate could predict a fatal flaw in the printability of a solder paste sample. However, false positive single shear rate viscosity readings are not unknown.

Alpha Assembly Solutions

Laser Solder Reflow: A Process Solution Part II

Technical Library | 2007-09-13 16:58:52.0

With the use of laser light for reflow having been established, all that remains is to apply it to best effect. Each time a laser is fired, it pumps a specific amount of energy at a particular wavelength to a particular point in space. Where technique comes in is choosing where and for how long to apply that light along with the application of accessory equipment to optimize solder paste reflow. This presentation covers the specifics of how to determine which process choices are the right process choices based on the needs of your product to maximize yield and throughput.

Nordson EFD

NanoClear Coated Stencils

Technical Library | 2023-05-22 16:49:42.0

Our customers' issues • Apertures are getting smaller • Paste does not release as well • Contaminates the bottom of the stencil • Increases defects / reduces yield  Insufficient solder  Bridging  Solder balls on surface of PCB  Flux residue • Requires more frequent cleaning • Reduced efficiency (wasted time) • Increased use of consumables (cost)  USC fabric (use "cheap" fabric to reduce cost)  Lint creates more defects  Cleaning chemistries (use IPA to reduce cost)  IPA breaks down flux and can create more defects

ASM Assembly Systems (DEK)

  1 2 3 Next

paste time searches for Companies, Equipment, Machines, Suppliers & Information