Technical Library: pcb cleaning process (Page 7 of 21)

SMT Stencil Cleaning: A Decision That Could Impact Production

Technical Library | 2021-11-16 22:17:27.0

Ultrasonics, coupled with an aqueous detergent process that cleans at below 43ºC, may be best suited for fine-pitch SMT screens and stencils. Aqueous detergents clean more effectively than solvents, with little or no environmental impact. Because of the environmental concerns driving today's technology decisions, the once simple decision of selecting a stencil cleaning process is now clouded with different chemicals, different cleaning machines and various types of solder paste, all with specific environmental, health and safety related issues and regulations.

Xerox

Compatibility of Cleaning Agents With Nano-Coated Stencils

Technical Library | 2013-03-12 13:25:18.0

High density and miniaturized circuit assemblies challenge the solder paste printing process. The use of small components such as 0201, 01005 and μBGA devices require good paste release to prevent solder paste bridging and misalignment. When placing these miniaturized components, taller paste deposits are often required. To improve solder paste deposition, a nano-coating is applied to laser cut stencils to improve transfer efficiency. One concern is the compatibility of the nano-coating with cleaning agents used in understencil wipe and stencil cleaning. The purpose of this research is to test the chemical compatibility of common cleaning agents used in understencil wipe and stencil cleaning processes.Compatibility of Cleaning Agents With Nano-Coated Stencils

KYZEN Corporation

Stencil Cleaning Handbook

Technical Library | 2022-08-17 01:21:54.0

Back in the "good old days," stencil cleaning was effortless and effective. CFC-based solvents were sprayed or wiped onto a stencil with apertures hundreds of times larger than modern-day components. The stencil cleaning process was not considered a value-added procedure; instead it was the cleaning of a production tool. How times have changed. The late-1980s ushered in the end of most of the popular solvents, and the machines that consumed them. Assemblers turned to alternative cleaning agents, including IPAs and other solvents.

Aqueous Technologies Corporation

Duo-Solvent Cleaning Process Development for Removing Flux Residue from Class 3 Hardware

Technical Library | 2016-07-28 17:00:20.0

Packaging trends enable disruptive technologies. The miniaturization of components reduces the distance between conductive paths. Cleanliness of electronic hardware based on the service exposure of electrical equipment and controls can improve the reliability and cost effectiveness of the entire system. Problems resulting from leakage currents and electrochemical migration lead to unintended power disruption and intermittent performance problems due to corrosion issues.Solvent cleaning has a long history of use for cleaning electronic hardware. Limitations with solvent based cleaning agents due to environmental effects and the ability to clean new flux designs commonly used to join miniaturized components has limited the use of solvent cleaning processes for cleaning electronic hardware. To address these limitations, new solvent cleaning agents and processes have been designed to clean highly dense electronic hardware.The research study will evaluate the cleaning and electrical performance using the IPC B-52 Test Vehicle. Lead Free noclean solder paste will be used to join the components to the test vehicle. Ion Chromatography and SIR values will be reported.

KYZEN Corporation

Using Hansen Space to Optimize Solvent Based Cleaning Processes for Manufacturing Electronic Assemblies.

Technical Library | 2009-07-09 17:23:07.0

Sometimes you just cannot clean with water. Good examples of this are: circuits with batteries attached, cleaning prior to encapsulation, ionic cleanliness testing, and non-sealed or other water sensitive parts. High impedance or high voltage circuits need to be cleaned of flux residues and other soils to maximize performance and reliability and, in these types of circuits; water can be just as detrimental as fluxes. When solvent cleaning is called for, Hansen solubility parameters can help target the best solvent or solvent blend to remove the residue of interest, and prevent degradation of the assembly being manufactured. In short, using this approach can time, manufacturing cost and reduce product liability.

Austin American Technology

Partially-Activated Flux Residue Impacts on Electronic Assembly Reliabilities

Technical Library | 2016-12-29 15:37:51.0

The reliabilities of the flux residue of electronic assemblies and semiconductor packages are attracting more and more attention with the adoption of no-clean fluxes by majority of the industry. In recent years, the concern of "partially activated" flux residue and their influence on reliability have been significantly raised due to the miniaturization along with high density design trend, selective soldering process adoption, and the expanded use of pallets in wave soldering process. When flux residue becomes trapped under low stand-off devices, pallets or unsoldered areas (e.g. selective process), it may contain unevaporated solvent, "live" activators and metal complex intermediates with different chemical composition and concentration levels depending on the thermal profiles. These partially-activated residues can directly impact the corrosion, surface insulation and electrochemical migration of the final assembly. In this study, a few application tests were developed internally to understand this issue. Two traditional liquid flux and two newly developed fluxes were selected to build up the basic models. The preliminary results also provide a scientific approach to design highly reliable products with the goal to minimize the reliability risk for the complex PCB designs and assembly processes. This paper was originally published by SMTA in the Proceedings of SMTA International

Kester

NanoClear Coated Stencils

Technical Library | 2023-05-22 16:49:42.0

Our customers' issues • Apertures are getting smaller • Paste does not release as well • Contaminates the bottom of the stencil • Increases defects / reduces yield  Insufficient solder  Bridging  Solder balls on surface of PCB  Flux residue • Requires more frequent cleaning • Reduced efficiency (wasted time) • Increased use of consumables (cost)  USC fabric (use "cheap" fabric to reduce cost)  Lint creates more defects  Cleaning chemistries (use IPA to reduce cost)  IPA breaks down flux and can create more defects

ASM Assembly Systems (DEK)

Validity of the IPC R.O.S.E. Method 2.3.25 Researched

Technical Library | 2010-06-10 21:01:48.0

This paper researches the effectiveness of the R.O.S.E. cleanliness testing process for dissolving and measuring ionic contaminants from boards soldered with no-clean and lead-free flux technologies.

KYZEN Corporation

Solder Materials Science Gets Small as Miniaturization Challenges Old Rules

Technical Library | 2011-03-10 18:59:02.0

History shows that the electronics assembly industry is always up for a good challenge. This was proven with the successful move from through-hole to SMT assembly, the elimination of CFCs from the cleaning process and implementation of lead

Henkel Electronic Materials

SMT Process Recommendations Defect Minimization Methods for a No-Clean SMT Process

Technical Library | 1999-05-07 11:35:19.0

Key competitive advantages can be obtained through the minimization of process defects and disruptions. In today's electronic manufacturing processes there are many variables to optimize. By gaining an understanding of what the defects are, and where they come from, is a key step in the process towards defect free/six sigma manufacturing. In the last decade, Surface Mount Technology processes have been slowly converting towards the No-Clean philosophy. This new trend has spawned new processing issues which need to be addressed. This paper will investigate solutions to current problems in the processing of No-Clean SMT processes.

Kester


pcb cleaning process searches for Companies, Equipment, Machines, Suppliers & Information

Precision PCB Services, Inc
Precision PCB Services, Inc

Products, services, training & consulting for the assembly, rework & repair of electronic assemblies. BGA process experts. Manufacturers Rep, Distributor & Service Provider for Seamark/Zhuomao and Shuttle Star BGA Rework Stations.

Training Provider / Manufacturer's Representative / Equipment Dealer / Broker / Auctions / Consultant / Service Provider

1750 Mitchell Ave.
Oroville, CA USA

Phone: (888) 406-2830

Selective soldering solutions with Jade soldering machine

High Precision Fluid Dispensers
Blackfox IPC Training & Certification

High Throughput Reflow Oven
SMTAI 2024 - SMTA International

World's Best Reflow Oven Customizable for Unique Applications