Technical Library | 2018-02-14 22:58:54.0
This document describes general guidelines and attention points for PCB design regarding selective soldering. The guidelines can be applied for Select Wave and/or Multi Wave soldering process in both leaded and leadfree alloy. When a PCB is designed according to these guidelines, a stable and solid solder-process can be guaranteed.
Technical Library | 2016-04-08 01:19:52.0
PCB assembly designs become more complex year-on-year, yet early-stage form/fit compliance verification of all designed-in components to the intended manufacturing processes remains a challenge. So long as librarians at the design and manufacturing levels continue to maintain their own local standards for component representation, there is no common representation in the design-to-manufacturing phase of the product lifecycle that can provide the basis for transfer of manufacturing process rules to the design level. A comprehensive methodology must be implemented for all component types, not just the minority which happen to conform to formal packaging standards, to successfully left-shift assembly and test DFM analysis to the design level and thus compress NPI cycle times.(...)This paper will demonstrate the technological components of the working solution: the logic for deriving repeatable and standardized package and pin classifications from a common source of component physical-model content, the method for associating DFA and DFT rules to those classifications, and the transfer of those rules to separate DFM and NPI analysis tools elsewhere in the design-through-manufacturing chain resulting in a consistent DFM process across multiple design and manufacturing organizations.
Technical Library | 2023-10-23 18:28:42.0
This application note discusses the Maxim Integrated's wafer-level packaging (WLP) and provides the PCB design and surface-mount technology (SMT) guidelines for the WLP
Technical Library | 2023-10-09 15:18:50.0
This technical document provides necessary information and general guidelines for soldering and PCB design for the Würth Elektronik eiSos MEMS sensor products with an LGA surface-mount package
Technical Library | 2009-03-25 17:14:11.0
This article presents design guidelines for helping users of HDMI mux-repeaters to maximize the device's full performance through careful printed circuit board (PCB) design. We'll explain important concepts of some main aspects of high-speed PCB design with recommendations. This discussion will cover layer stack, differential traces, controlled impedance transmission lines, discontinuities, routing guidelines, reference planes, vias and decoupling capacitors.
Technical Library | 2010-08-19 17:50:32.0
This article looks at each of the roles of the engineer and PCB designer, considers the traditional design process, and makes suggestions on how the designer can contribute significantly to improving a design’s overall signal integrity while simultaneousl
Technical Library | 2024-02-05 17:51:01.0
Objective: Drying = reducing the humidity in PCB before soldering Preventing delamination caused by thermal stress after moisture absorption Methods: Drying in convection and/ or vacuum oven Parameters subject to material type, soldering surface, layer count, time to soldering, layout (copper-plated areas)
Technical Library | 2023-10-09 16:10:02.0
This document provides high-level PCB design, sensor mounting, and handling guidelines for TDK IMU devices, which incorporate a combination of gyroscopes and accelerometers. Each sensor has specific requirements to ensure the highest performance in a finished product. For a layout assessment of your design, including placement and estimated temperature disturbances, please contact TDK. The TDK IMU devices discussed in this document (ICM-40607x, ICM-40608, ICM-42xxx, ICM-43xxx, and ICM-45xxx products) consist of 3-axis MEMS gyroscopes and 3-axis MEMS accelerometers.
Technical Library | 2017-11-30 10:29:29.0
Each year the electronics industry is faced with new product designs that call for smaller printed circuit boards (PCBs) to function in more aggressive and rigorous service environments. As demands change, conformal coating is becoming increasingly adopted to ensure PCB reliability in environments where moisture, condensation, dust, dirt, salts, chemicals, abrasion, thermal shock, mechanical shock, and other factors can all affect circuit performance. This guide reviews the benefits of using light-cure conformal coatings as well as cost justification, typical processing guidelines and best practices, product selection criteria, data, and industry specifications.
Technical Library | 2023-05-02 18:50:24.0
Surface-mount PCB components are smaller than their lead-based counterparts and provide a radically higher component density. They are available in a variety of shapes and sizes designated by a series of standardized codes curated by the electronics industry. Of these PCB components, the 0201-sized are the smallest, measuring 0.024 x 0.012 in. (0.6 x 0.3 mm) – that's 70% smaller than the previous 0402 level! The 0201 components are designed to improve reliability in space-constrained applications such as portable electronics like smartphones, tablets, robotics and digital cameras, but require delicate handling during the assembly process. Given the miniaturized dimensions of an 0201 package, it is crucial that the mounting process abide by a series of guidelines regarding the design of the PCB mounting pads and solderable metallization, PCB circuit trace width, solder paste selection, package placement and overages, solder paste reflow, solder stencil screening, and final inspection. It's advisable that one review this information when procuring the services of a PCB assembler.
Products, services, training & consulting for the assembly, rework & repair of electronic assemblies. BGA process experts. Manufacturers Rep, Distributor & Service Provider for Seamark/Zhuomao and Shuttle Star BGA Rework Stations.
Training Provider / Manufacturer's Representative / Equipment Dealer / Broker / Auctions / Consultant / Service Provider
1750 Mitchell Ave.
Oroville, CA USA
Phone: (888) 406-2830