Technical Library: pcb interconnection (Page 1 of 2)

Conductive Adhesive Dispensing for Electronic Manufacturing

Technical Library | 2023-09-07 14:54:10.0

A global manufacturer of a broad line of electronic interconnect solutions worked with us to dispense conductive adhesive EpoTek H20E-FC. EpoTek H20E-FC is a two-component, electrically conductive, snap curing epoxy for photovoltaic thin film module stringing, semiconductor packaging and PCB circuit assembly. The primary goal was filling a rectangular cavity on a connector. The epoxy needed to fill the connector to the top of the walls in less than three seconds.

GPD Global

Laser Direct Imaging of Tracks on PCB Covered With Laser Photoresist

Technical Library | 2008-04-15 14:43:08.0

The increasing demands for miniaturization and better functionality of electronic components and devices have a significant effect on the requirements facing the printed circuit board (PCB) industry. PCB manufactures are driving for producing high density interconnect (HDI) boards at significantly reduced cost and reduced implementation time. The interconnection complexity of the PCB is still growing and today calls for 50/50 μm or 25/25 μm technology are real. Existing technologies are unable to offer acceptable solution. Recently the Laser Direct Imaging (LDI) technology is considered as an answer for these challenges.

Unipress - Institute of High Pressure Physics of the Polish Academy of Sciences

Anisotropic Conductive Adhesive Bonding - A High Quality Interconnection Technique

Technical Library | 2011-09-08 13:46:10.0

Anisotropic Conductive Adhesive Bonding is an interconnection technique mostly used for connecting displays to pcb’s using anisotropic conductive adhesive and flex foils. For successful implementation there are a few basic constraints. If these are followed, display connection is a simple and reliable process, giving top quality connections. Heat-Sealing can be done in any factory and can be introduced in a few months, from start of design to mass productions

MIYACHI EUROPE GmbH

An Innovative Reliability Solution to Interconnect of Flexible/Rigid Substrates

Technical Library | 2016-01-12 11:03:35.0

With the pitch size of interconnect getting finer and finer, the bonding strength between flexible and rigid (e.g. PCB, ceramic) substrates becomes a serious issue because it is not strong enough to meet the customer’s requirement. Capillary underfill has been used to enhance the bonding strength between flexible and rigid substrates, but the enhancement is very limited, particularly for high temperature application. The bonding strength of underfilled flexible/rigid interconnect is dramatically decreased after being used at 180◦C, and the interconnects are weakened by the internal stress caused by the expansion of underfill at high temperatures. In order to resolve reliability issues of the interconnect between flexible/rigid substrates, solder joint encapsulant was implemented into the thermal compression bonding process, which was used to manufacture the interconnect between flexible/rigid substrates. Compared to the traditional process, the strength of the interconnect was doubled and the reliability was significantly improved in high temperature application.

YINCAE Advanced Materials, LLC.

Where PCBs and Printed Electronics Meet

Technical Library | 2016-07-14 18:21:29.0

Printed Circuit Boards (PCBs) and Printed Electronics (PE) both describe conductor/substrate combinations that make connections. Both PCB and PE technologies have been in use for a long time in one form or another with PCBs currently the standard for complex, high speed electronics and PE for user interface, complex form factor or other film based applications. New and innovative applications create the opportunity for promising structures. Taking advantage of the PCB shop's capability as well as the material set can help create these structures and indeed PE materials can find use in more traditional PCBs. New materials and new uses of existing materials open up many possibilities in electronic interconnecting structures. PCB manufacturers have a complex manufacturing infrastructure, well suited for both additive and subtractive conductor processing. While built around rigid material processing (flex PCB being the exception), there are opportunities for PE substrate processing. As electronics devices are applied to more and more parts of our lives, we need to continually push for better solutions. Fit, function, manufacturability, and cost are all important considerations. Crossing the PCB/PE boundary is a way to meet the challenge.

INSULECTRO

Development of a Design & Manufacturing Environment for Reliable and Cost- Effective PCB Embedding Technology

Technical Library | 2011-10-06 13:59:04.0

The desire to have more functionality into increasingly smaller size end products has been pushing the PCB and IC Packaging industry towards High Density Interconnect (HDI) and 3D Packaging (stacked dies, embedded packaged components). Many companies in the high-end consumer electronics market place have been embedding passive chip components on inner PCB and IC Packages for a few years now. However, embedding packaged components on inner layers has remained elusive for the broader market due to lack of proper design tools and high cost of embedding components on inner layers (...) This paper will highlight several key industrialization aspects addressed in the frame of the European funded FP7 HERMES* project to build a manufacturing environment for products with embedded components. The program entered its third year and is now dealing with the manufacturing of functional demonstrators as an introduction to industrialization.

Cadence Design Systems, Inc.

Optimizing BNC PCB Footprint Designs for Digital Video Equipment

Technical Library | 2010-11-06 02:44:38.0

An increasing number of video equipment is running at Gigabit rates today. They are interconnected through relatively large size coaxial BNC connectors. While these connectors are in general of good quality, their performance in the equipment depends on

Samtec, Inc.

Temperature Cycling and Fatigue in Electronics

Technical Library | 2020-01-01 17:06:52.0

The majority of electronic failures occur due to thermally induced stresses and strains caused by excessive differences in coefficients of thermal expansion (CTE) across materials.CTE mismatches occur in both 1st and 2nd level interconnects in electronics assemblies. 1st level interconnects connect the die to a substrate. This substrate can be underfilled so there are both global and local CTE mismatches to consider. 2nd level interconnects connect the substrate, or package, to the printed circuit board (PCB). This would be considered a "board level" CTE mismatch. Several stress and strain mitigation techniques exist including the use of conformal coating.

DfR Solutions

Semi-Additive Process (SAP) Utilizing Very Uniform Ultrathin Copper by A Novel Catalyst

Technical Library | 2020-09-02 22:14:36.0

The demand for miniaturization and higher density electronic products has continued steadily for years, and this trend is expected to continue, according to various semiconductor technology and applications roadmaps. The printed circuit board (PCB) must support this trend as the central interconnection of the system. There are several options for fine line circuitry. A typical fine line circuit PCB product using copper foil technology, such as the modified semi-additive process (mSAP), uses a thin base copper layer made by pre-etching. The ultrathin copper foil process (SAP with ultrathin copper foil) is facing a technology limit for the miniaturization due to copper roughness and thickness control. The SAP process using sputtered copper is a solution, but the sputtering process is expensive and has issues with via plating. SAP using electroless copper deposition is another solution, but the process involved is challenged to achieve adequate adhesion and insulation between fine-pitch circuitries. A novel catalyst system--liquid metal ink (LMI)--has been developed that avoids these concerns and promotes a very controlled copper thickness over the substrate, targeting next generation high density interconnect (HDI) to wafer-level packaging substrates and enabling 5-micron level feature sizes. This novel catalyst has a unique feature, high density, and atomic-level deposition. Whereas conventional tin-palladium catalyst systems provide sporadic coverage over the substrate surface, the deposited catalyst covers the entire substrate surface. As a result, the catalyst enables improved uniformity of the copper deposition starting from the initial stage while providing higher adhesion and higher insulation resistance compared to the traditional catalysts used in SAP processes. This article discusses this new catalyst process, which both proposes a typical SAP process using the new catalyst and demonstrates the reliability improvements through a comparison between a new SAP PCB process and a conventional SAP PCB process.

Averatek Corporation

Printed Circuit Board Technology Inspired Stretchable Circuits

Technical Library | 2013-10-10 16:28:21.0

In the past 15 years, stretchable electronic circuits have emerged as a new technology in the domain of assembly, interconnections, and sensor circuit technologies. In the meantime, a wide variety of processes using many different materials have been explored in this new field. In the current contribution, we present an approach inspired by conventional rigid and flexible printed circuit board (PCB) technology.

Centre for Microsystems Technology - Ghent University

  1 2 Next

pcb interconnection searches for Companies, Equipment, Machines, Suppliers & Information

Precision PCB Services, Inc
Precision PCB Services, Inc

Products, services, training & consulting for the assembly, rework & repair of electronic assemblies. BGA process experts. Manufacturers Rep, Distributor & Service Provider for Seamark/Zhuomao and Shuttle Star BGA Rework Stations.

Training Provider / Manufacturer's Representative / Equipment Dealer / Broker / Auctions / Consultant / Service Provider

1750 Mitchell Ave.
Oroville, CA USA

Phone: (888) 406-2830

Pillarhouse USA for handload Selective Soldering Needs

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
High Throughput Reflow Oven

High Throughput Reflow Oven
Solder Paste Dispensing

World's Best Reflow Oven Customizable for Unique Applications
Pillarhouse USA for Selective Soldering Needs

Easily dispense fine pitch components with ±25µm positioning accuracy.