Technical Library: pcb tinning (Page 1 of 2)

Precision Control in Electronic Assembly: Selective Wave Soldering Machine

Technical Library | 2024-02-26 09:08:23.0

Precision Control in Electronic Assembly: Selective Wave Soldering Machine Discover the technical features of I.C.T's Selective Wave Soldering Machines, including precision flux application and innovative preheating systems. Learn how these machines redefine efficiency and reliability in electronic assembly. Introduction: Enhancing Precision Soldering: Technical Features of Selective Wave Soldering Machines by I.C.T Explore the innovative design and operation of I.C.T's Selective Wave Soldering Machines, featuring a seamless PCB handling system and modular design for enhanced assembly line flexibility. Experience precision control and efficiency with comprehensive PC controls, allowing easy adjustment of solder parameters like temperature and flux type. Automatic calibration and CCD mark positioning ensure consistent soldering quality. Detail Excellence: Enhancing Selective Wave Soldering Technology Flux System Mastery German high-frequency pulse injection valve ensures precise flux application. Optional flux nozzle jam detection simplifies maintenance. Pressure tank and precision pressure flow meter ensure consistent flux control. Preheat System Excellence Bottom IR preheating system ensures stability and efficiency. Maintenance is simplified with a tool-free mode and plug-in design. Soldering System Innovation Swedish "PRECIMETER" electromagnetic pump coil ensures stability. Stainless steel soldering pot prevents tin liquid leakage. N2 online heating system reduces solder dross. Transmission System Mastery Specially designed material profiles ensure operational stability. Thickened customized rails guarantee flawless operation. Control and Intelligence Keyence PLC+module high-end bus control system ensures stability. Industry 4.0 compliance allows guided programming and real-time data visualization. Market Promotion and Success Stories: Elevating Selective Wave Soldering Machine I.C.T's strategic market positioning has led to global success across diverse industries. Success stories from European clients highlight reliability and trust in the machine. Over 70 units sold across 20+ countries since 2022, establishing its industry-leading position. Conclusion Conclusion: I.C.T's Selective Wave Soldering Machine combines technical excellence with global market success, solidifying its leadership in precision soldering technology.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Lead-Free BGA Rework-Transition Issues

Technical Library | 2007-08-16 13:34:31.0

While experienced inspectors may be able to determine the aesthetic differences between a lead-free PCB assembly and a tin-lead version, one cannot rely on the "experienced eye". "Less wetting out to the pad edges" (Figure A) and "graininess and lack of shininess of the solder joint" (Figure B) are typical comments about some lead-free solder joints. However, in cases where a Nitrogen atmosphere was present during the reflow of the solder joint (Figure C), there will be little visual differences between the lead free alloys and their tin-lead counterparts.

BEST Inc.

PCB/Substrate Finishing Overview

Technical Library | 2023-01-06 16:18:23.0

PCB/Substrate Finishing Overview - iNEMI - PCB Surface Finish Overview. Surface Finish deployment ranked by surface area. OSP greatest. Imm Tin. ENIG. Silver. ENEPIG.

MacDermid, Inc.

Influence of Salt Residues on BGA Head on Pillow (Hip)

Technical Library | 2016-05-26 15:07:36.0

The oxide layers are known as wetting inhibitors in component and PCB metallizations. The oxide acts as barrier that prevent the tin diffusion from happening. Besides, in corrosion studies, the role of salt residues -with Cl ion- on some metals is known as being promoters of oxidation or corrosion. On the other hand, most of corrosion studies with tin metallization are focused mainly on the corrosion resistance of tin alloys, but little has been done respecting to the influence of salts on tin metallization wetting. In this paper, a series of experiments was carried over to know the influence of specifically NaCl on BGA wetting given Head in Pillow (HiP) as result.

Continental Corporation

Reliability of ENEPIG by Sequential Thermal Cycling and Aging

Technical Library | 2019-04-17 21:29:14.0

Electroless nickel electroless palladium immersion gold (ENEPIG) surface finish for printed circuit board (PCB) has now become a key surface finish that is used for both tin-lead and lead-free solder assemblies. This paper presents the reliability of land grid array (LGA) component packages with 1156 pads assembled with tin-lead solder onto PCBs with an ENEPIG finish and then subjected to thermal cycling and then isothermal aging.

Jet Propulsion Laboratory

Going Lead Free With Vapor Phase Soldering - Lead Free Is Still a Challenge For Major Industries.

Technical Library | 2014-01-30 18:08:04.0

As of today, the electronic industry is aware of the requirements for their products to be lead free. All components are typically available in lead free quality. This comprises packages like BGAs with BGA solder balls to PCB board finishes like HASL. The suppliers are providing everything that is needed. It is harder to get the old tin leaded (SnPb) components for new applications today, than lead free ones. So why has not everybody changed over fully yet and how can the challenges be overcome? A big concern in this transition process is reflow soldering. The process temperatures for lead free applications became much higher. Related with this is more stress for all the components. It affects the quality and reliability of the electronic units and products...

IBL - Löttechnik GmbH

ACHIEVING EXCELLENT VERTICAL HOLE FILL ON THERMALLY CHALLENGING BOARDS USING SELECTIVE SOLDERING

Technical Library | 2023-11-14 19:52:11.0

The continuous drive in the Electronics industry to build new and innovative products has caused competitive design companies to develop assemblies with consolidated PCB designs, decreased physical sizes, and increased performance characteristics. As a result of these new designs, manufacturers of electronics are forced to contend with many challenges. One of the most significant challenges being the processing of thru-hole components on high thermal mass PCBs having the potential to exceed 20 layers in thicknesses and have copper mass contents of over 40oz. High thermal mass PCBs, coupled with the use of mixed technologies, decreased component spacing, and the change from Tin Lead Solder to Lead Free Alloys has lead many manufacturing facilities to purchase advanced soldering equipment to process challenging assemblies with a high degree of repeatability.

Plexus Corporation

Improving Thermal Cycle and Mechanical Drop Impact Resistance of a Lead-free Tin-Silver-Bismuth-Indium Solder Alloy with Minor Doping of Copper Additive

Technical Library | 2018-07-11 22:46:13.0

For a demanding automotive electronics assembly, a highly thermal fatigue resistant solder alloy is required, which makes the lead-free Sn-Ag-Cu type solder alloy unusable. Sn-Ag-Bi-In solder alloy is considered as a high reliability solder alloy due to significant improvement in thermal fatigue resistance as compared to a standard Sn-Ag-Cu alloy. The alloy has not only good thermal fatigue properties but it also has superior ductility and tensile strength by appropriate addition of In; however, initial results indicated a sub-par performance in joint reliability when it is soldered on a printed circuit board (PCB) with Electroless Nickel Immersion Gold (ENIG) surface finish. Numerous experiments were performed to find out appropriate alloying element which would help improve the performance on ENIG PCBs. Sn-Ag-Bi-In solder alloys with and without Cu additions were prepared and then tests were carried out to see the performance in a thermal fatigue test and a drop resistance test.to investigate the impact of Cu addition towards the improvement of joint reliability on ENIG finish PCB. Also, the mechanism of such improvement is documented.

Koki Company LTD

Semi-Additive Process (SAP) Utilizing Very Uniform Ultrathin Copper by A Novel Catalyst

Technical Library | 2020-09-02 22:14:36.0

The demand for miniaturization and higher density electronic products has continued steadily for years, and this trend is expected to continue, according to various semiconductor technology and applications roadmaps. The printed circuit board (PCB) must support this trend as the central interconnection of the system. There are several options for fine line circuitry. A typical fine line circuit PCB product using copper foil technology, such as the modified semi-additive process (mSAP), uses a thin base copper layer made by pre-etching. The ultrathin copper foil process (SAP with ultrathin copper foil) is facing a technology limit for the miniaturization due to copper roughness and thickness control. The SAP process using sputtered copper is a solution, but the sputtering process is expensive and has issues with via plating. SAP using electroless copper deposition is another solution, but the process involved is challenged to achieve adequate adhesion and insulation between fine-pitch circuitries. A novel catalyst system--liquid metal ink (LMI)--has been developed that avoids these concerns and promotes a very controlled copper thickness over the substrate, targeting next generation high density interconnect (HDI) to wafer-level packaging substrates and enabling 5-micron level feature sizes. This novel catalyst has a unique feature, high density, and atomic-level deposition. Whereas conventional tin-palladium catalyst systems provide sporadic coverage over the substrate surface, the deposited catalyst covers the entire substrate surface. As a result, the catalyst enables improved uniformity of the copper deposition starting from the initial stage while providing higher adhesion and higher insulation resistance compared to the traditional catalysts used in SAP processes. This article discusses this new catalyst process, which both proposes a typical SAP process using the new catalyst and demonstrates the reliability improvements through a comparison between a new SAP PCB process and a conventional SAP PCB process.

Averatek Corporation

How Detrimental Production Concerns Related to Solder Mask Residues Can Be Countered by Simple Operational Adaptations

Technical Library | 2019-09-19 00:28:48.0

The symbiotic relationship between solder masks and selective finishes is not new. The soldermask application is one of the key considerations to ensure a successful application of a selective finish. The selective finish is the final chemical step of the PCB manufacturing process, this is when the panels are at their most valuable and are unfortunately not re-workable. Imperfections are not tolerated, even if they are wholly cosmetic. Quality issues often manifest themselves in the form of a 'ping pong' conversation between the fabricators, the soldermask suppliers and the selective finish suppliers. Without tangible evidence these discussions are difficult to resolve and the selective finish process is usually regarded as responsible. This paper will focus on the chemical characteristics and use them to predict or identify potential issues before they occur rather than specifically name 'critical' soldermasks. It is also the intention of this paper to address the potential of a soldermask to react to common yield hiking practices like UV bumping and oven curing. It is hoped that this awareness will help fabricators to ensure maximum yields by asking the right questions. 'Critical’ soldermasks impact all selective finishes. In this paper, practical experience using immersion tin will be used to highlight the relationship between 'critical' soldermasks and some of the issues seen in the field. The paper will include a novel approach to identify re-deposited volatiles after the reflow.

Atotech

  1 2 Next

pcb tinning searches for Companies, Equipment, Machines, Suppliers & Information

Precision PCB Services, Inc
Precision PCB Services, Inc

Products, services, training & consulting for the assembly, rework & repair of electronic assemblies. BGA process experts. Manufacturers Rep, Distributor & Service Provider for Seamark/Zhuomao and Shuttle Star BGA Rework Stations.

Training Provider / Manufacturer's Representative / Equipment Dealer / Broker / Auctions / Consultant / Service Provider

1750 Mitchell Ave.
Oroville, CA USA

Phone: (888) 406-2830