Technical Library | 2023-09-15 09:47:24.0
Explore our PCBA Coating Line introduction to safeguard your electronics. Discover the best coatings for PCBAs to protect against environmental factors and ensure long-lasting reliability.
Technical Library | 2013-01-31 18:43:15.0
There are three key industry trends that are driving the need for temperature-dependent warpage measurement: the trend toward finer-pitch devices, the emergence of lead-free processing, and changes in device form factors. Warpage measurement has become a key measurement for analysis; prevention and prediction of interconnect defects and has been employed in failure analysis labs and production sites worldwide. First published in the 2012 IPC APEX EXPO technical conference proceedings
Technical Library | 2020-07-02 01:14:44.0
Head-in-Pillow (HIP) defects are a growing concern in the electronics industry. These defects are usually believed to be the result of several factors, individually or in combination. Some of the major contributing factors include: surface quality of the BGA spheres, activity of the paste flux, improper placement / misalignment of the components, a non-optimal reflow profile, and warpage of the components. To understand the role of each of these factors in producing head-in-pillow defects and to find ways to mitigate them, we have developed two in-house tests.
Technical Library | 2019-10-03 14:27:01.0
Knowing how package warpage changes over temperature is a critical variable in order to assemble reliable surface mount attached technology. Component and component or component and board surfaces must stay relatively flat with one another or surface mount defects, such as head-in-pillow, open joints, bridged joints, stretched joints, etc. may occur. Initial package flatness can be affected by numerous aspects of the component manufacturing and design. However, change in shape over temperature is primarily driven by CTE mismatch between the different materials in the package. Thus material CTE is a critical factor in package design. When analyzing or modeling package warpage, one may assume that the package receives heat evenly on all sides, when in production this may not be the case. Thus, in order to understand how temperature uniformity can affect the warpage of a package, a case study of package warpage versus different heating spreads is performed.Packages used in the case study have larger form factors, so that the effect of non-uniformity can be more readily quantified within each package. Small and thin packages are less prone to issues with package temperature variation, due to the ability for the heat to conduct through the package material and make up for uneven sources of heat. Multiple packages and multiple package form factors are measured for warpage via a shadow moiré technique while being heated and cooled through reflow profiles matching real world production conditions. Heating of the package is adjusted to compare an evenly heated package to one that is heated unevenly and has poor temperature uniformity between package surfaces. The warpage is measured dynamically as the package is heated and cooled. Conclusions are drawn as to how the role of uneven temperature spread affects the package warpage.
1 |