Technical Library: pen and film (Page 1 of 2)

Effects of Tin and Copper Nanotexturization on Tin Whisker Formation

Technical Library | 2012-08-16 22:38:05.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. The physical mechanisms behind tin whisker formation in pure tin (Sn) films continue to elude the microelectronics industry. Despite modest advances in whisker mitigation techniqu

Johns Hopkins Applied Physics Laboratory

Drying and storage recommendation for printed circuit boards

Technical Library | 2024-01-08 18:44:00.0

Printed circuit boards, especially multilayer, flexible and rigid-flexible printed circuit boards, are extremely hygroscopic, i.e. they absorb and bind the moisture in the air. A dried polyimide film, for example, will have reached its moisture saturation level again after just a few hours.

ILFA GmbH

Focus on temperature and customized sensors

Technical Library | 2016-10-24 14:59:03.0

Temperature measurement is one of the most important physical parameters when determining quality, accuracy and reliability of processes not only in industrial use, but also in almost all human activities. Temperature sensors are produced with different technologies to fit specific application requirements. IST AG has concentrated one part of the development and manufacturing on high-end thin-film temperature sensors. This know-how is partially derived from the semiconductor industry and allows us to manufacture sensors with high accuracy, excellent long-term stability, high reliability and repeatability within a wide temperature range from -200 °C up to 1000 °C. Because of very small dimensions and low thermal mass, the thin-film temperature sensors exhibit a very short response time.

Innovative Sensor Technology, USA Division

New development of atomic layer deposition: processes, methods and applications

Technical Library | 2020-09-08 16:43:32.0

Atomic layer deposition (ALD) is an ultra-thin film deposition technique that has found many applications owing to its distinct abilities. They include uniform deposition of conformal films with controllable thickness, even on complex three-dimensional surfaces, and can improve the efficiency of electronic devices. This technology has attracted significant interest both for fundamental understanding how the new functional materials can be synthesized by ALD and for numerous practical applications, particularly in advanced nanopatterning for microelectronics, energy storage systems, desalinations, catalysis and medical fields. This review introduces the progress made in ALD, both for computational and experimental methodologies, and provides an outlook of this emerging technology in comparison with other film deposition methods. It discusses experimental approaches and factors that affect the deposition and presents simulation methods, such as molecular dynamics and computational fluid dynamics, which help determine and predict effective ways to optimize ALD processes, hence enabling the reduction in cost, energy waste and adverse environmental impacts. Specific examples are chosen to illustrate the progress in ALD processes and applications that showed a considerable impact on other technologies.

University of Johannesburg

Conformal Surface Plasmons Propagating on Ultrathin and Flexible Films

Technical Library | 2013-09-05 17:44:14.0

Surface plasmon polaritons (SPPs) are localized surface electromagnetic waves that propagate along the interface between a metal and a dielectric. Owing to their inherent subwavelength confinement, SPPs have a strong potential to become building blocks of a type of photonic circuitry built up on 2D metal surfaces; however, SPPs are difficult to control on curved surfaces conformably and flexibly to produce advanced functional devices. Here we propose the concept of conformal surface plasmons (CSPs), surface plasmon waves that can propagate on ultrathin and flexible films to long distances in a wide broadband range from microwave to mid-infrared frequencies.

Southeast University (SEU)

Where PCBs and Printed Electronics Meet

Technical Library | 2016-07-14 18:21:29.0

Printed Circuit Boards (PCBs) and Printed Electronics (PE) both describe conductor/substrate combinations that make connections. Both PCB and PE technologies have been in use for a long time in one form or another with PCBs currently the standard for complex, high speed electronics and PE for user interface, complex form factor or other film based applications. New and innovative applications create the opportunity for promising structures. Taking advantage of the PCB shop's capability as well as the material set can help create these structures and indeed PE materials can find use in more traditional PCBs. New materials and new uses of existing materials open up many possibilities in electronic interconnecting structures. PCB manufacturers have a complex manufacturing infrastructure, well suited for both additive and subtractive conductor processing. While built around rigid material processing (flex PCB being the exception), there are opportunities for PE substrate processing. As electronics devices are applied to more and more parts of our lives, we need to continually push for better solutions. Fit, function, manufacturability, and cost are all important considerations. Crossing the PCB/PE boundary is a way to meet the challenge.

INSULECTRO

Advanced Technologies for Industry – Product Watch Flexible and printed electronics

Technical Library | 2021-07-13 19:51:10.0

Flexible electronics refers to a class of lightweight, flexible and electronic sensing components and electronic devices built on stretchable substrates1 that are used (and can be used) for a broad set of products and applications such as displays and sensors. The most prominent characteristic is that they can bend in contrast to electronic systems built in rigid materials. They are manufactured on flexible plastic substrates, such as polyamide, PEEK2 or transparent conductive polyester films3, or other materials such as paper, textile, or thin glass. The term flexible also refers to the roll-to-roll manufacturing process.

European Commission - Executive Agency for Small and Medium-sized Enterprises (EASME)

Embedding Passive and Active Components: PCB Design and Fabrication Process Variations

Technical Library | 2016-06-16 15:29:31.0

Embedding components within the PC board structure is not a new concept. Until recently, however, most embedded component PC board applications adapted only passive elements. The early component forming processes relied on resistive inks and films to enable embedding of resistor and capacitors elements. Although these forming methods remain viable, many companies are choosing to place very thin discrete passive components and semiconductor die elements within the PC board layering structure. In addition to improving the products performance, companies have found that by reducing the component population on the PC board's surface, board level assembly is less complex and the PC board can be made smaller, The smaller substrate, even when more complex, often results in lower cost. Although size and cost reductions are significant attributes, the closer coupling of key elements can also contribute to improving functional performance.This paper focuses on six basic embedded component structure designs described in IPC-7092.

Vern Solberg - Solberg Technical Consulting

Durable Conductive Inks and SMD Attachment for Robust Printed Electronics

Technical Library | 2018-10-24 18:04:12.0

Polymer Thick Film (PTF)-based printed electronics (aka Printed Electronics) has improved in durability over the last few decades and is now a proven alternative to copper circuitry in many applications once thought beyond the capability of PTF circuitry. This paper describes peak performance and areas for future improvement.State-of-the-art PTF circuitry performance includes the ability to withstand sharp crease tests, 85C/85%RH damp heat 5VDC bias aging (silver migration), auto seat durability cycling, SMT mandrel flexing, and others. The IPC/SGIA subcommittee for Standards Tests development has adopted several ASTM test methods for PTF circuitry and is actively developing needed improvements or additions. These standards are described herein. Advantages of PTF circuitry over copper include: varied conductive material compositions, lower cost and lower environmental impact. Necessary improvements include: robust integration of chip and power, higher conductivity, and fine line multi-layer patterning.

Engineered Materials Systems, Inc.

High Throw Electroless Copper - Enabling new Opportunities for IC Substrates and HDI Manufacturing

Technical Library | 2017-04-20 13:51:14.0

The one constant in electronics manufacturing is change. Moore's Law, which successfully predicted a rate of change at which transistor counts doubled on Integrated Circuits (ICs) at lower cost for decades, is ceding to be an appropriate prediction tool. Increasing technical and economic requirements, deriving from the semiconductor environment, are cascaded down to the printed circuit and in particular to the IC substrate manufacturers. This is both a challenge and an opportunity for IC Substrate manufacturers, when dealing with the demands of the packaging market. (...)This paper introduces two new electroless copper baths developed for IC substrates manufacturing based on Semi Additive Process (SAP) technology (hereafter referred to as E'less Copper IC) and HDI production (hereafter referred to as E'less Copper HDI) and optimized for high throw into BMVs. An introduction to reliable throwing power measurement methods based on scanning electron microscope (SEM) is given, followed by a compilation and discussion of key performance criteria for each application, namely throwing power, copper adhesion on the substrate, dry film adhesion and reliability.

Atotech

  1 2 Next

pen and film searches for Companies, Equipment, Machines, Suppliers & Information