Technical Library | 2016-01-07 19:13:23.0
The purpose of this study is to investigate the effect of plasma surface modification to improve adhesion strength between polytetrafluoroethylene (PTFE) and electroless copper plating. PTFE is widely used in many industries because of its unique electrical, thermal, and mechanical characteristics. However, because of its low surface energy, it is difficult to acquire enough adhesion strength between PTFE and other substances without surface modification. Plasma is well known as one of the surface modification techniques that improve adhesion strength.
Technical Library | 2019-06-26 23:21:49.0
Copper-filled micro-vias are a key technology in high density interconnect (HDI) designs that have enabled increasing miniaturization and densification of printed circuit boards for the next generation of electronic products. Compared with standard plated through holes (PTHs) copper filled vias provide greater design flexibility, improved signal performance, and can potentially help reduce layer count, thus reducing cost. Considering these advantages, there are strong incentives to optimize the via filling process. This paper presents an innovative DC acid copper via fill formulation, for VCP (Vertical Continues Plating) applications which rapidly fills vias while minimizing surface plating.
Technical Library | 2020-07-22 19:39:05.0
The PWB industry needs to complete reliability testing in order to define the minimum copper wrap plating thickness requirement for confirming the reliability of PTH structures. Predicting reliability must ensure that the failure mechanism is demonstrated as a wear-out failure mode because a plating wrap failure is unpredictable. The purpose of this study was to quantify the effects of various copper wrap plating thicknesses through IST testing followed by micro sectioning to determine the failure mechanism and identify the minimum copper wrap thickness required for a reliable PWB. Minimum copper wrap plating thickness has become an even a bigger concern since designers started designing HDI products with buried vias, microvias and through filled vias all in one design. PWBs go through multiple plating cycles requiring planarization after each plating cycle to keep the surface copper to a manageable thickness for etching. The companies started a project to study the relationship between Copper wrap plating thickness and via reliability. The project had two phases. This paper will present findings from both Phase 1 and Phase 2.
Technical Library | 2019-07-17 17:56:34.0
The increased demand for electronic devices in recent years has led to an extensive research in the field to meet the requirements of the industry. Electrolytic copper has been an important technology in the fabrication of PCBs and semiconductors. Aqueous sulfuric acid baths are explored for filling or building up with copper structures like blind micro vias (BMV), trenches, through holes (TH), and pillar bumps. As circuit miniaturization continues, developing a process that simultaneously fills vias and plates TH with various sizes and aspect ratios, while minimizing the surface copper thickness is critical. Filling BMV and plating TH at the same time, presents great difficulties for the PCB manufactures. The conventional copper plating processes that provide good via fill and leveling of the deposit tend to worsen the throwing power (TP) of the electroplating bath. TP is defined as the ratio of the deposit copper thickness in the center of the through hole to its thickness at the surface. In this paper an optimization of recently developed innovative, one step acid copper plating technology for filling vias with a minimal surface thickness and plating through holes is presented.
Technical Library | 2024-02-05 17:51:01.0
Objective: Drying = reducing the humidity in PCB before soldering Preventing delamination caused by thermal stress after moisture absorption Methods: Drying in convection and/ or vacuum oven Parameters subject to material type, soldering surface, layer count, time to soldering, layout (copper-plated areas)
Technical Library | 2020-07-29 20:12:52.0
Aluminum is a metal that it is hard to solder due to the high surface tension difference between it and molten solder alloy. This occurs because aluminum rapidly forms a tenacious oxide layer whenever it is exposed to oxygen in the air. The oxide layer is responsible for the high surface tension difference between the aluminum and the solder and impedes the solder from spreading evenly on an aluminum surface. There are hundreds of aluminum alloys available in the marketplace; it is important to identify the form of aluminum that is being soldered. Once this is done, an appropriate soldering technique can be chosen for soldering the specific aluminum alloy under consideration. Direct aluminum soldering eliminates using expensive plating techniques to prepare the aluminum surface for soldering.
Technical Library | 2013-10-31 17:36:41.0
Multilayer printed circuit boards (PCBs) that utilize high performance materials are inherently far more challenging for a fabricator to build, due to significant material property differences over standard epoxy glass FR4. These unique material characteristics often require higher processing temperatures, special surface treatments (to aid in hole and surface plating), they possess different expansion properties, making layer-to-layer registration more difficult to control, and require many other unique considerations.
Technical Library | 2017-09-07 13:56:11.0
As a surface finish for PCBs, Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) was selected over Electroless Nickel/Immersion Gold (ENIG) for CMOS image sensor applications with both surface mount technology (SMT) and gold ball bonding processes in mind based on the research available on-line. Challenges in the wire bonding process on ENEPIG with regards to bondability and other plating related issues are summarized.
Technical Library | 2023-05-10 01:39:38.0
DPC (DirectPlatingCopper) thin film process is a method of prepare copper film using magnetron sputtering technology. This process is a process in which the copper target with the target material is placed in a true cavity chamber, and plasma is generated on the copper target surface by magnetron sputtering technology. The ions in the plasma are bombarded on the surface of the target, which is sputtered into fine particles and deposited on the substrate to form a copper film.
Technical Library | 2015-11-12 19:04:51.0
In order to provide the functionality in today’s electronics, printed circuit boards are approaching the complexity of semiconductors. For flexible circuits with 1 mil lines and spaces, this means no nodules, no pits, and excellent ductility with thinner deposits. One of the areas that has to change to get to this plateau of technology is acid copper plating. Acid copper systems have changed in minor increments since their introduction decades ago. However, the basic cell design using soluble anodes in slabs or baskets has for the most part remained the same. Soluble, phosphorized, copper anodes introduce particulate and limits the ability to control plating distribution.
The SMTA membership is a network of professionals who build skills, share practical experience and develop solutions in electronic assembly technologies and related business operations.
Training Provider / Events Organizer / Association / Non-Profit
6600 City W Pkwy
Eden Prairie, MN USA
Phone: 952-920-7682