Technical Library: poor paste transfer (Page 1 of 3)

SMT Printing Collapse Causes and Countermeasures --KINGSUN

Technical Library | 2023-12-15 03:06:24.0

The first process in the SMT industry is solder paste printing. After the solder paste printing is completed, electronic components are attached to PCB pads through a SMT machine, and then reflow soldered. A preliminary PCB board is roughly processed. SMT is a combination of multiple devices, and such a line is called an SMT production line. Our common PCBA is processed through this process. In SMT technology, each process is very important, and poor quality can be caused by different process defects. Today, we are discussing the causes and countermeasures of SMT printing collapse.

DONGGUAN KINGSUN AUTOMATION TECHNOLOGY CO.,LTD

Surface Finish Issues Affecting Solderability and Reliability

Technical Library | 2019-06-07 14:49:54.0

ACI Technologies was contacted in regards to poor solder joint reliability. The customer submitted an assembly that was exhibiting intermittent opens at multiple locations on a ball grid array (BGA) component. The assembly’s functionality did not survive international shipping, essentially shock and vibration failures, immediately making the quality of the solder joints suspect. The customer was asked about the contract manufacturer and the reflow oven profile as well as the solder paste and surface finish used. The ACI engineering staff evaluated the contract manufacturer’s technique and determined that they were competent in the methods they used for placing thermocouples in the proper locations and developing the reflow oven profile. The surface finish was unusual, but not unheard of, in that it was hard gold over hard nickel, rather than electroless nickel immersion gold (ENIG). The customer was able to supply boundary scan testing data which showed a diagonal row of troublesome BGA pins.

ACI Technologies, Inc.

Print Performance Studies Comparing Electroform and Laser-Cut Stencils

Technical Library | 2015-11-05 15:09:27.0

There has been recent activity and interest in Laser-Cut Electroform blank foils as an alternative to normal Electroform stencils. The present study will investigate and compare the print performance in terms of % paste transfer as well the dispersion in paste transfer volume for a variety of Electroform and Laser-Cut stencils with and without post processing treatments. Side wall quality will also be investigated in detail. A Jabil solder paste qualification test board will be used as the PCB test vehicle.

Photo Stencil LLC

CHANGING THE RULES OF STENCIL DESIGN

Technical Library | 2023-05-22 16:42:56.0

Nano-coatings are applied to solder paste stencils with the intent of improving the solder paste printing process. Do they really make a noticeable improvement? The effect of Nano-coatings on solder paste print performance was investigated. Transfer efficiencies were studied across aperture sizes ranging from 0.30 to 0.80 area ratio. Also investigated were the effects of Nano-coatings on transfer efficiencies of tin-lead, lead-free, water soluble, no-clean, and type 3, 4, and 5 solder pastes. Solder paste print performance for each Nano-coating was summarized with respect to all of these variables.

FCT ASSEMBLY, INC.

Electronic Assembly Misprint Cleaning Advancements

Technical Library | 2023-05-07 19:26:34.0

Misprint Circuit Assemblies ■ Cleaning misprints is a production gap ■ Commonly cleaned in stencil cleaning equipment ■ Stencil Cleaning equipment allows for the + Collection and filtration of wet solder paste ■ Stencil Cleaning equipment short comings + Inability to clean B-Side misprints + Poor rinse quality 3

KYZEN Corporation

Stencil Printing of Small Apertures

Technical Library | 2012-10-25 16:34:02.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. This paper will examine stencil technologies (including Laser and Electroform), Aperture Wall coatings (including Nickel-Teflon coatings and Nano-coatings), and how these parameters influence paste transfer for miniature devices with Area Ratios less than the standard recommended lower limit of .5. A matrix of print tests will be utilized to compare paste transfer and measure the effectiveness of the different stencil configurations. Area Ratios ranging from .32 to .68 will be investigated.

Photo Stencil LLC

Understanding the Effect of Process Changes and Flux Chemistry on Mid-Chip Solder Balling

Technical Library | 2016-11-30 21:30:50.0

Mid-chip solder balling is a defect typically associated with solder paste exhibiting poor hot slump and/or insufficient wetting during the reflow soldering process, resulting in paste flowing under the component or onto the solder resist. Once molten, this solder is compressed and forced to the side of the component, causing mid-chip solder balling.This paper documents the experimental work performed to further understand the impact on mid-chip solder balling from both the manufacturing process and the flux chemistry.

Henkel Electronic Materials

Optimization of Stencil Apertures to Compensate for Scooping During Printing

Technical Library | 2018-03-07 22:41:05.0

This study investigates the scooping effect during solder paste printing as a function of aperture width, aperture length and squeegee pressure. The percent of the theoretical volume deposited depends on the PWB topography. A typical bimodal percent volume distribution is attributed to poor release apertures and large apertures, where scooping takes place, yielding percent volumes 100%. This printing experiment is done with a concomitant validation of the printing process using standard 3D Solder Paste Inspection (SPI) equipment.

Qual-Pro Corporation

Voiding Performance with Solder Pastes Containing Modified SAC Alloys for Automotive Applications in Bottom Terminated Component Assemblies

Technical Library | 2019-07-24 23:55:32.0

Voiding is a key concern for components with thermal planes because interruptions in Z-axis continuity of the solder joint will hinder thermal transfer. When assembling components with solder paste, there is a high propensity for voiding due to the confined nature of the solder paste deposits under the component. Once reflowed, many factors contribute to the amount of voiding in a solder joint such as the reflow profile, designs of the component, board and stencil, and material factors. This study will focus on the solder paste alloy and flux combination as well as profile and board surface finishes.

Indium Corporation

Compatibility of Cleaning Agents With Nano-Coated Stencils

Technical Library | 2013-03-12 13:25:18.0

High density and miniaturized circuit assemblies challenge the solder paste printing process. The use of small components such as 0201, 01005 and μBGA devices require good paste release to prevent solder paste bridging and misalignment. When placing these miniaturized components, taller paste deposits are often required. To improve solder paste deposition, a nano-coating is applied to laser cut stencils to improve transfer efficiency. One concern is the compatibility of the nano-coating with cleaning agents used in understencil wipe and stencil cleaning. The purpose of this research is to test the chemical compatibility of common cleaning agents used in understencil wipe and stencil cleaning processes.Compatibility of Cleaning Agents With Nano-Coated Stencils

KYZEN Corporation

  1 2 3 Next

poor paste transfer searches for Companies, Equipment, Machines, Suppliers & Information

Voidless Reflow Soldering

High Throughput Reflow Oven
Void Free Reflow Soldering

High Precision Fluid Dispensers
pressure curing ovens

World's Best Reflow Oven Customizable for Unique Applications
Fully Automatic BGA Rework Station

SMT & PCB Equipment - MPM, DEK, Heller, Europlacer and more...