Technical Library: poor wetting on bga (Page 1 of 1)

Influence of Salt Residues on BGA Head on Pillow (Hip)

Technical Library | 2016-05-26 15:07:36.0

The oxide layers are known as wetting inhibitors in component and PCB metallizations. The oxide acts as barrier that prevent the tin diffusion from happening. Besides, in corrosion studies, the role of salt residues -with Cl ion- on some metals is known as being promoters of oxidation or corrosion. On the other hand, most of corrosion studies with tin metallization are focused mainly on the corrosion resistance of tin alloys, but little has been done respecting to the influence of salts on tin metallization wetting. In this paper, a series of experiments was carried over to know the influence of specifically NaCl on BGA wetting given Head in Pillow (HiP) as result.

Continental Corporation

Understanding the Effect of Process Changes and Flux Chemistry on Mid-Chip Solder Balling

Technical Library | 2016-11-30 21:30:50.0

Mid-chip solder balling is a defect typically associated with solder paste exhibiting poor hot slump and/or insufficient wetting during the reflow soldering process, resulting in paste flowing under the component or onto the solder resist. Once molten, this solder is compressed and forced to the side of the component, causing mid-chip solder balling.This paper documents the experimental work performed to further understand the impact on mid-chip solder balling from both the manufacturing process and the flux chemistry.

Henkel Electronic Materials

Addressing the Challenge of Head-In-Pillow Defects in Electronics Assembly

Technical Library | 2013-12-27 10:39:21.0

The head-in-pillow defect has become a relatively common failure mode in the industry since the implementation of Pb-free technologies, generating much concern. A head-in-pillow defect is the incomplete wetting of the entire solder joint of a Ball-Grid Array (BGA), Chip-Scale Package (CSP), or even a Package-On-Package (PoP) and is characterized as a process anomaly, where the solder paste and BGA ball both reflow but do not coalesce. When looking at a cross-section, it actually looks like a head has pressed into a soft pillow. There are two main sources of head-in-pillow defects: poor wetting and PWB or package warpage. Poor wetting can result from a variety of sources, such as solder ball oxidation, an inappropriate thermal reflow profile or poor fluxing action. This paper addresses the three sources or contributing issues (supply, process & material) of the head-in-pillow defects. It will thoroughly review these three issues and how they relate to result in head-in pillow defects. In addition, a head-in-pillow elimination plan will be presented with real life examples will be to illustrate these head-in-pillow solutions.

Indium Corporation

Solving the ENIG Black Pad Problem: An ITRI Report on Round 2

Technical Library | 2013-01-17 15:37:21.0

A problem exists with electroless nickel / immersion gold (ENIG) surface finish on some pads, on some boards, that causes the solder joint to separate from the nickel surface, causing an open. The solder has wet and dissolved the gold. A weak tin to nickel intermetallic bond initially occurs, but the intermetallic bond cracks and separates when put under stress. Since the electroless nickel / immersion gold finish performs satisfactory in most applications, there had to be some area within the current chemistry process window that was satisfactory. The problem has been described as a 'BGA Black Pad Problem' or by HP as an 'Interfacial Fracture of BGA Packages…'[1]. A 24 variable experiment using three different chemistries was conducted during the ITRI (Interconnect Technology Research Institute) ENIG Project, Round 1, to investigate what process parameters of the chemical matrix were potentially satisfactory to use and which process parameters of the chemical matrix need to be avoided. The ITRI ENIG Project has completed Round 1 of testing and is now in the process of Round 2 TV (Test Vehicle) build.

Celestica Corporation

  1  

poor wetting on bga searches for Companies, Equipment, Machines, Suppliers & Information

Count On Tools, Inc.
Count On Tools, Inc.

COT specializes in high quality SMT nozzles and consumables for pick and place machines. We provide special engineering design service of custom nozzles for those unique and odd components.

Manufacturer

2481 Hilton Drive
Gainesville, GA USA

Phone: (770) 538-0411

Best SMT Reflow Oven

High Throughput Reflow Oven
IPC Training & Certification - Blackfox

Training online, at your facility, or at one of our worldwide training centers"
SMT feeders

High Precision Fluid Dispensers
SMTAI 2024 - SMTA International

World's Best Reflow Oven Customizable for Unique Applications