Technical Library: precise location failure (Page 1 of 2)

On Oreology, the fracture and flow of "milk's favorite cookie® "

Technical Library | 2024-08-29 18:30:46.0

The mechanical experience of consumption (i.e., feel, softness, and texture) of many foods is intrinsic to their enjoyable consumption, one example being the habit of twisting a sandwich cookie to reveal the cream. Scientifically, sandwich cookies present a paradigmatic model of parallel plate rheometry in which a fluid sample, the cream, is held between two parallel plates, the wafers. When the wafers are counterrotated, the cream deforms, flows, and ultimately fractures, leading to separation of the cookie into two pieces. We introduce Oreology (/Oriːˈɒl@dʒi/), from the Nabisco Oreo for "cookie" and the Greek rheo logia for "flow study," as the study of the flow and fracture of sandwich cookies. Using a laboratory rheometer, we measure failure mechanics of the eponymous Oreo's "creme" and probe the influence of rotation rate, amount of creme, and flavor on the stress–strain curve and postmortem creme distribution. The results typically show adhesive failure, in which nearly all (95%) creme remains on one wafer after failure, and we ascribe this to the production process, as we confirm that the creme-heavy side is uniformly oriented within most of the boxes of Oreos. However, cookies in boxes stored under potentially adverse conditions (higher temperature and humidity) show cohesive failure resulting in the creme dividing between wafer halves after failure. Failure mechanics further classify the creme texture as "mushy." Finally, we introduce and validate the design of an open-source, three-dimensionally printed Oreometer powered by rubber bands and coins for encouraging higher precision home studies to contribute new discoveries to this incipient field of study

1st Place Machinery Inc.

ICT-T550 Revolutionizes SMT PCB Coating in Industry 4.0

Technical Library | 2023-11-22 09:17:49.0

In the dynamic realm of Industry 4.0, I.C.T introduces the I.C.T-T550 SMT PCB coating machine, a pioneering addition designed to meet the evolving needs of modern manufacturing. This advanced equipment is equipped with features that not only boost productivity but also prioritize precise and consistent coating quality. Let's delve into the crucial attributes that establish the I.C.T-T550 as a vital component in your production process. 1. Automated Precision for Coating Consistency The I.C.T-T550 PCB Coating Machine integrates an automated pressure regulation system for both dispensing valve and pressure tank, equipped with precision regulators and digital gauges. This ensures a consistent coating process, optimizing precision. 2. Front-End Accessibility for Operational Efficiency Located at the front end, power supply and air pressure adjustments are easily accessible, streamlining control. This user-friendly design enhances operator workflow efficiency. 3. Durable Material Transport The open-material transport rail undergoes hardening treatment and utilizes a specialized stainless steel chain drive, ensuring both longevity and reliable material transport. 4. Track Width Adjustment for Trouble-Free Operation Track width adjustment is achieved through a synchronous belt drive mechanism, ensuring prolonged and trouble-free operation. 5. CNC Machined Frame for Unparalleled Precision The machine's frame, subjected to CNC machining, features an independent, all-steel gantry frame, ensuring the parallel alignment of tracks and axes. 6. Workshop Environment Enhancement To ensure a cleaner and safer workspace, the equipment features air curtains at the track entrance and exit, preventing fumes from escaping. It also includes a dedicated exhaust outlet, improving overall workshop air quality. 7. Intuitive Programming and Visualization The I.C.T-T550 PCB Coating Machine allows flexible coating path editing through intuitive programming. The equipment employs a teach mode for programming, offering a visual interface for coating path design. 8. User-Friendly Interface with Practical Design Featuring a user-friendly interface with fault alerts and menu displays, the I.C.T-T550 delivers a sleek and practical design. 9. Streamlined Repetition and Data Management Efficiency is paramount, and the I.C.T-T550 offers the ability to mirror, array, and replicate coating paths, simplifying the process, especially with multiple boards. 10. Real-Time Data Monitoring The equipment automatically collects and displays data, including production volume and individual product work times, enabling effective production performance tracking. 11. Smart Adhesive Management The I.C.T-T550 intelligently monitors adhesive levels, providing automatic alerts for replenishment, ensuring uninterrupted coating. In summary, the I.C.T SMT PCB coating machine seamlessly combines precision, automation, and smart features to meet the demands of Industry 4.0. With integration into MES systems, it provides a reliable and efficient solution for elevating PCB coating processes. The I.C.T-T550's adherence to European safety standards and CE certification underscores our commitment to safety and compliance. For further inquiries or information about additional safety standards, please contact us. Whether optimizing coating quality or enhancing factory productivity, the I.C.T-T550 marks a step into the future of intelligent manufacturing. Explore a variety of coating valves or seek guidance by reaching out to us.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

UV Laser PCB Depaneling Machine Improve Cutting Effect

Technical Library | 2021-09-02 08:17:07.0

We are a professional manufacturer of PCB depaneling machines, which is workable for all boards, including flex and regid boards, v-scored boards and routed boards. Laser pcb depaneling is non-contact way without mechanical stress,this solution is good for modern precision PCB depaneling. It has below advantages: 1. No dust The production environment of the circuit board industry is carried out in the dust-free workshop. The traditional pcb depaneling equipment, such as blade moving type machine, will inevitably produce residues and micro powder, which will pollute the 10000 and 1000 class dust-free workshops and affect the conductivity of products. The UV laser PCB cutting machine is a vaporization processing process, which will not produce dust and is conducive to the conductivity of the product. 2. High cutting precision The processing gap of high-precision traditional processing equipment can not reach the gap width of less than 100 microns, which will cause certain damage to the lines on the edge or PCBA circuit board containing components. The focus spot of the laser cutting machine is small, and the ultraviolet cold processing mode has little thermal impact on the edge of the circuit board. The cutting position accuracy is less than 50 microns, and the cutting size accuracy is less than 30 microns, which will not affect the edge of the circuit board, and the precision is high. 3. No stress Traditional processing methods generally have V-grooves, which will cause certain damage to the board in the manufacturing process. The UV laser PCB cutting machine can directly cut the bare board without making V-grooves. In addition, the traditional processing methods directly use tools to act on the circuit board, especially the stamping method has a great impact on the circuit board, which is easy to cause board deformation. The laser cutting machine is a non-contact processing mode, which acts on the surface of the material through the high-energy beam, which will not cause the influence of stress and the deformation and damage of the circuit board. 4. For special-shaped cutting, it is easy to automate The UV laser PCB cutting machine can cut for any shape without replacing any props and fixtures, and without steel mesh. The same equipment can meet special-shaped and straight-line cutting, which is easy to realize assembly line automatic production and high flexibility. It is easy to improve production efficiency and save production process and production cycle. In particular, it can quickly and efficiently meet the needs of rapid proofing, directly import the drawing, and then locate the cutting. 5. High compatibility The UV laser PCB cutting machine can process the materials around the circuit board, such as PCB, FPC, covering film, pet, reinforcing board, IC, ultra-thin metal cutting, etc. it has strong practicability, is compatible with the processing of a variety of materials, is easy to operate, can be imported into the drawing, does not need to adjust any mechanical parts, and is easy to operate and maintain. 6. Good cutting edge effect The cutting edge is smooth and neat without burr. It can be processed and formed directly according to the size of the drawing, which is conducive to improving the yield of the product. It can be directly installed into the subsequent process without further processing. For more details about UV laser depaneling, please feel free to contact us. www.pcbdepanelingrouter.com

Winsmart Electronic Co.,Ltd

Revolutionize PCB Manufacturing with SMT Dispensing Machines

Technical Library | 2023-12-18 11:33:57.0

Elevate your electronic manufacturing game with the I.C.T-D600 SMT Dispensing Machine! Precision, safety, and efficiency in one powerful solution. ​In the dynamic realm of electronic manufacturing, precision and efficiency are not just preferences but essential requirements. Introducing the I.C.T-D600, an automatic glue dispenser machine engineered to enhance production processes across various applications. From chip encapsulation to PCB assembly, SMT red-glue dispensing, LED lens production, and medical device creation, SMT dispensing machine is a versatile solution tailored to meet the demands of the industry. Essential Attributes Of The I.C.T-D600 Automatic Glue Dispenser Machine 1. Compliance with European Safety Standards: The I.C.T-D600 SMT dispensing machine prioritizes not only efficiency but also safety, boasting compliance with European safety standards and holding a CE certificate. This ensures a secure and reliable manufacturing environment, aligning with global quality benchmarks. 2. International Component Quality: Internationally renowned components form the core of the D600 SMT dispensing machine. From Panasonic servomotors to MINTRON CCD, each element is carefully selected, guaranteeing high performance and durability. This commitment to quality components results in a machine that operates seamlessly, reducing downtime and maintenance costs. 3. Impressive Performance Metrics: The SMT dispensing machinedoesn't just meet expectations; it surpasses them with exceptional performance metrics: Maximum Guide Rail Speed: 400mm/s Fastest Injection Valve Speed: 20 spots/sec Dispensing Accuracy: ±0.02mm Repeated Accuracy: ±0.01mm Machine Characteristics: Core Part – Jet Valve The non-contact jet dispensing method ensures high-speed operation (max jet speed: 20 spots/second), high accuracy with a minimum dispensing volume of 5nl, and flexibility with extremely small dispensing volumes. The thermostatic system for the flow channel and sprayer ensures uniform glue temperature, resulting in low maintenance costs and an extended service life. Enhanced Capacity: Non-contact jet dispensing eliminates the need for Z-axis motion. Integrated temperature control technology reduces manual intervention. Automatic glue compensation minimizes artificial regulation time. Dual-track design reduces waiting time. Automatic visual location identification and compensation. Non-contact height detection with laser reduces height detection time. Flexibility: Capable of handling substrates or backings of various sizes. Optional heating module. Independent control of dual tracks with user-friendly software. Fast switching between different product lines. Universal platform suitable for various processes with different glues

I.C.T ( Dongguan ICT Technology Co., Ltd. )

High-precision dispensing technology: Potting technology for medical wearables

Technical Library | 2023-07-27 18:41:40.0

Diabetes affects many millions of people worldwide. New technology for real-time glucose measurement replaces the usual unpleasant pricking of a finger: a sensor located in the subcutaneous tissue of the diabetes patient measures the glucose values and transmits them to a receiver. Production of such medical wearables calls for high-precision dispensing systems for applying very small amounts of UV adhesives to medical PCBs and for integrated system concepts to achieve this. A perfect task for Scheugenpflug.

Scheugenpflug Inc.

A Life Prediction Model of Multilayered PTH Based on Fatigue Mechanism

Technical Library | 2019-12-26 19:13:52.0

Plated through hole (PTH) plays a critical role in printed circuit board (PCB) reliability. Thermal fatigue deformation of the PTH material is regarded as the primary factor affecting the lifetime of electrical devices. Numerous research efforts have focused on the failure mechanism model of PTH. However, most of the existing models were based on the one-dimensional structure hypothesis without taking the multilayered structure and external pad into consideration.In this paper, the constitutive relation of multilayered PTH is developed to establish the stress equation, and finite element analysis (FEA) is performed to locate the maximum stress and simulate the influence of the material properties. Finally, thermal cycle tests are conducted to verify the accuracy of the life prediction results. This model could be used in fatigue failure portable diagnosis and for life prediction of multilayered PCB.

Beihang University

A System Level Electrostatic Discharge Protection Modeling Methodology for Time Domain Analysis.

Technical Library | 2014-04-03 18:01:13.0

A system level modeling methodology is presented and validated on a simple case. It allows precise simulations of electrostatic discharge (ESD) stress propagation on a printed circuit board (PCB). The proposed model includes the integrated circuit (IC) ESD protection network, IC package, PCB lines, passives components, and externals elements. The impact of an external component on the ESD propagation paths into an IC is demonstrated. Resulting current and voltage waveforms are analyzed to highlight the interactions between all the elements of an operating PCB. A precise measurement technique was designed and used to compare with the simulation results. The model proposed in this paper is able to predict, with good accuracy, the propagation of currents and voltages into the whole system during ESD stress. It might be used to understand why failures occur and how to fix them with the most suitable solution.

Institute of Electrical and Electronics Engineers (IEEE)

An Intelligent Approach For Improving Printed Circuit Board Assembly Process Performance In Smart Manufacturing

Technical Library | 2021-08-04 18:46:25.0

The process of printed circuit board assembly (PCBA) involves several machines, such as a stencil printer, placement machine and reflow oven, to solder and assemble electronic components onto printed circuit boards (PCBs). In the production flow, some failure prevention mechanisms are deployed to ensure the designated quality of PCBA, including solder paste inspection (SPI), automated optical inspection (AOI) and in-circuit testing (ICT). However, such methods to locate the failures are reactive in nature, which may create waste and require additional effort to be spent re-manufacturing and inspecting the PCBs. Worse still, the process performance of the assembly process cannot be guaranteed at a high level. Therefore, there is a need to improve the performance of the PCBA process. To address the aforementioned challenges in the PCBA process, an intelligent assembly process improvement system (IAPIS) is proposed, which integrates the k-means clustering method and multi-response Taguchi method to formulate a pro-active approach to investigate and manage the process performance.

Hong Kong Polytechnic University [The]

A Study on Effects of Copper Wrap Specifications on Printed Circuit Board Reliability

Technical Library | 2021-07-20 20:02:29.0

During the manufacturing of printed circuit boards (PCBs) for a Flight Project, it was found that a European manufacturer was building its boards to a European standard that had no requirement for copper wrap on the vias. The amount of copper wrap that was measured on coupons from the panel containing the boards of interest was less than the amount specified in IPC-6012 Rev B, Class 3. To help determine the reliability and usability of the boards, three sets of tests and a simulation were run. The test results, along with results of simulation and destructive physical analysis, are presented in this paper. The first experiment involved subjecting coupons from the panels supplied by the European manufacturer to thermal cycling. After 17 000 cycles, the test was stopped with no failures. A second set of accelerated tests involved comparing the thermal fatigue life of test samples made from FR4 and polyimide with varying amounts of copper wrap. Again, the testing did not reveal any failures. The third test involved using interconnect stress test coupons with through-hole vias and blind vias that were subjected to elevated temperatures to accelerate fatigue failures. While there were failures, as expected, the failures were at barrel cracks. In addition to the experiments, this paper also discusses the results of finite-element analysis using simulation software that was used to model plated-through holes under thermal stress using a steady-state analysis, also showing the main failure mode was barrel cracking. The tests show that although copper wrap was sought as a better alternative to butt joints between barrel plating and copper foil layers, manufacturability remains challenging and attempts to meet the requirements often result in features that reduce the reliability of the boards. Experimental and simulation work discussed in this paper indicate that the standard requirements for copper wrap are not contributing to the overall board reliability, although it should be added that a design with a butt joint is going to be a higher risk than a reduced copper wrap design. The study further shows that procurement requirements for wrap plating thickness from Class 3 to Class 2 would pose little risk to reliability (minimum 5 μm/0.197 mil for all via types).Experimental results corroborated by modeling indicate that the stress maxima are internal to the barrels rather than at the wrap location. In fact, the existence of Cu wrap was determined to have no appreciable effect on reliability.

NASA Office Of Safety And Mission Assurance

Fatigue Damage Behavior of a Surface-mount Electronic Package Under Different Cyclic Applied Loads.

Technical Library | 2014-07-10 17:37:18.0

This paper studies and compares the effects of pull–pull and 3-point bending cyclic loadings on the mechanical fatigue damage behaviors of a solder joint in a surface-mount electronic package.The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respectively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.

Tsinghua University

  1 2 Next

precise location failure searches for Companies, Equipment, Machines, Suppliers & Information