Technical Library | 2015-04-29 03:29:56.0
Statistical Appearance Modelling technology enables an AOI system to “learn real world variation” based on operator interaction with inspection task results. This provides an accurate statistical description of normal variation in a product. With modelling technology, the user does not have to anticipate potential defects as the system will “flag” anything outside the “normal production range”. And, since the system is programmed with real production variation, it is sensitive to small subtle changes enabling reliable defect detection. Autonomous prediction of process variation enables an AOI system to be set up from a single PCB with production-ready performance. Setup time can be
Technical Library | 2015-12-14 13:40:04.0
A Manufacturing Execution System (MES) is a software program that manages and monitors production work in a factory. The MES controls and monitors all manufacturing data in real time, so there is no guesswork as to the status of any given job, machine, operator, etc. The focus is on short-interval scheduling (shift or day) with an emphasis on optimizing the distribution of work orders. Larger manufacturers have employed MES’s for years but many small to medium sized enterprises (SME’s) have yet to adopt such systems. The benefits of using an MES are many. Looking forward, I predict that even the smallest manufacturing companies will employ MES systems in the future.
Technical Library | 2013-02-14 12:54:29.0
Boundary-scan (1149.1) technology was originally developed to provide a far easier method to perform digital DC testing to detect intra-IC interconnect assembly faults, such as solder shorts and opens. Today's advanced IC technology now includes high-speed differential interfaces that include AC or DC coupling components loaded on the printed circuit assembly. Simple stuck-at-high/low test methods are not sufficient to detect all assembly fault conditions, which includes shorts, opens and missing components. Improved diagnostics requires detailed circuit analysis, predictive assembly fault simulation and more complex testing to isolate and accurately detect all possible assembly faults... First published in the 2012 IPC APEX EXPO technical conference proceedings
Technical Library | 2014-04-03 18:01:13.0
A system level modeling methodology is presented and validated on a simple case. It allows precise simulations of electrostatic discharge (ESD) stress propagation on a printed circuit board (PCB). The proposed model includes the integrated circuit (IC) ESD protection network, IC package, PCB lines, passives components, and externals elements. The impact of an external component on the ESD propagation paths into an IC is demonstrated. Resulting current and voltage waveforms are analyzed to highlight the interactions between all the elements of an operating PCB. A precise measurement technique was designed and used to compare with the simulation results. The model proposed in this paper is able to predict, with good accuracy, the propagation of currents and voltages into the whole system during ESD stress. It might be used to understand why failures occur and how to fix them with the most suitable solution.
Technical Library | 2016-05-12 16:29:40.0
Advances in miniaturized electronic devices have led to the evolution of microvias in high density interconnect (HDI) circuit boards from single-level to stacked structures that intersect multiple HDI layers. Stacked microvias are usually filled with electroplated copper. Challenges for fabricating reliable microvias include creating strong interface between the base of the microvia and the target pad, and generating no voids in the electrodeposited copper structures. Interface delamination is the most common microvia failure due to inferior quality of electroless copper, while microvia fatigue life can be reduced by over 90% as a result of large voids, according to the authors’ finite element analysis and fatigue life prediction. This paper addresses the influence of voids on reliability of microvias, as well as the interface delamination issue.
Technical Library | 2016-08-02 06:04:42.0
The next generation FUNDAS rest on one and only one motto (i.e.) technology up-gradation. For innovations in any corner of the world, a completely unique electronic solution is derived that accounts for fast trending modernization in the lifestyle of humans. With electronic design or manufacturing solution, the printed circuit boards are the groundwork for every electronic project. As the electronic control system and instruments are now applied in every predominant market across the globe, the use of PCB is predicted to have universal application in the global society. This article details you on the type of PCB’s used in the industrial sector, the application of PCB and innovations marked in the industrial sector with current steps taken by PCB manufacturers to provide unique solutions to the industrial sharks. See more: http://www.technotronix.us/pcbblog/printed-circuit-board-for-industrial-application-drives-a-wave-of-innovation/
Technical Library | 2018-08-15 17:27:28.0
Smartphones and tablets require very high flexibility and severe bending performance ability of the flexible printed circuits (FPCs) to fit into their thinner and smaller body designs. In these FPCs, the extraordinary highly flexible, treated rolled-annealed (RA) copper foils have recently used instead of regular RA foil and electro deposited foils. It is very important to measure the Young's moduli of these foils predicting the mechanical properties of FPCs such as capabilities of fatigue endurance, folding, and so on. Even though the manufacturers use IPC TM-650 2.4.18.3 test method for measuring Young's modulus of copper foils over many years, where Young's modulus is calculated from the stress–strain (S–S) curve, it is quite difficult to obtain the accurate Young's modulus of metal foils by this test method.
Technical Library | 2019-03-06 21:26:14.0
Electronic assemblies use a large variety of polymer materials with different mechanical and thermal properties to provide protection in harsh usage environments. However, variability in the mechanical properties such as the coefficient of thermal expansion and elastic modulus effects the material selection process by introducing uncertainty to the long term impacts on the reliability of the electronics. Typically, the main reliability issue is solder joint fatigue which accounts for a large amount of failures in electronic components. Therefore, it is necessary to understand the effect of polymer encapsulations (coatings, pottings and underfills) on the solder joints when predicting reliability.This paper presents the construction and validation of a thermo-mechanical tensile fatigue specimen. The thermal cycling range was matched with potting expansion properties in order to vary the magnitude of tensile stress imposed on solder joints
Technical Library | 2023-03-13 19:27:13.0
10%) and mean strains (>30%). A trace width effect is found for the fatigue behavior of 1 mm vs 2 mm wide specimens. The input specimen-characteristic curves are trace-width dependent, and the model predicts a decrease in Nf by a factor of up to 2 for the narrower trace width, in agreement with the experimental results. Two different methods are investigated to generate the rate of normalized resistance increase curves: uninterrupted fatigue tests (requiring ∼6–7 cyclic tests), and a single interrupted cyclic test (requiring only one specimen tested at progressively higher strain amplitude values). The results suggest that the initial decrease in normalized resistance rate only occurs for specimens with no prior loading. The minimum-rate curve is therefore recommended for more accurate fatigue estimates.
Technical Library | 2013-12-11 23:24:32.0
Today's analyses of electronics reliability at the system level typically use a "black box approach", with relatively poor understanding of the behaviors and performances of such "black boxes" and how they physically and electrically interact (...) The incorporation of more rigorous and more informative approaches and techniques needs to better understand (...) Understanding the Physics of Failure (PoF) is imperative. It is a formalized and structured approach to Failure Analysis/Forensics Engineering that focuses on total learning and not only fixing a particular current problem (...) In this paper we will present an explanation of various physical models that could be deployed through this method, namely, wire bond failures; thermo-mechanical fatigue; and vibration.