Technical Library: presented (Page 1 of 21)

Key Advances in Void Reduction in the Reflow Process Using Multi-Stage Controlled Vacuum

Technical Library | 2020-01-28 00:23:58.0

This paper explores new advances in the reflow soldering process including vacuum technology and warpage mitigation systems. The first topic for discussion will be the implementation of a vacuum process directly in a conventional inline soldering system. The second topic presented is the mitigation of warpage on substrates or wafers.

Heller Industries Inc.

Effect of Reflow Profile on SnPb and SnAgCu Solder Joint Shear Force

Technical Library | 2023-01-17 17:27:13.0

Reflow profile has significant impact on solder joint performance because it influences wetting and microstructure of the solder joint. The degree of wetting, the microstructure (in particular the intermetallic layer), and the inherent strength of the solder all factor into the reliability of the solder joint. This paper presents experimental results on the effect of reflow profile on both 63%Sn 37%Pb (SnPb) and 96.5%Sn 3.0%Ag 0.5%Cu (SAC 305) solder joint shear force. Specifically, the effect of the reflow peak temperature and time above solder liquidus temperature are studied. Nine reflow profiles for SAC 305 and nine reflow profiles for SnPb have been developed with three levels of peak temperature (230 o C, 240 o C, and 250 o C for SAC 305; and 195 o C, 205 o C, and 215 o C for SnPb) and three levels of time above solder liquidus temperature (30 sec., 60 sec., and 90 sec.). The shear force data of four different sizes of chip resistors (1206, 0805, 0603, and 0402) are compared across the different profiles. The shear force of the resistors is measured at time 0 (right after assembly). The fracture surfaces have been studied using a scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS)

Heller Industries Inc.

Flip Chip Attach Techniques

Technical Library | 2019-05-21 17:38:55.0

Last month we presented Flip Chip Rework.As promised, this month we follow up with attachment techniques. Flip chip assembly is a key technology for advanced packaging of microelectronic circuits. It allows attachment of a bare chip to a packaging substrate in a face-down configuration, with electrical connections between the chip and substrate via conducting “bumps.” Flip chip technology was first invented by IBM for mainframe computer application in the early 1960s. Semiconductor devices are mounted face down and electrically and mechanically connected to a substrate (Figure 1). IBM called this manufacturing process a C4 process (controlled collapse chip connection).

ACI Technologies, Inc.

Decapsulation of Integrated Circuits

Technical Library | 2019-05-24 09:27:33.0

Decapsulation, or de-cap, is a failure analysis technique which involves the removal of material packaging from an integrated circuit (IC). After de-cap, visual inspection by optical microscopy of the internal circuitry may reveal areas where damage is most likely to have occurred. In addition, scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDS) can identify the composition of any anomalies present after de-cap under higher magnification. The removal process of package material can be done either mechanically or chemically depending on the design of the integrated circuit. With ceramic packaging, de-cap is usually done mechanically by chiseling off the top with a fine razor and small hammer. For plastic packaging, de-cap requires chemical etching by strong acids. In this Tech Tips article, de-cap by chemical etching will be outlined step by step.

ACI Technologies, Inc.

Decapsulation of Integrated Circuits

Technical Library | 2019-05-29 10:38:59.0

Decapsulation, or de-cap, is a failure analysis technique which involves the removal of material packaging from an integrated circuit (IC). After de-cap, visual inspection by optical microscopy of the internal circuitry may reveal areas where damage is most likely to have occurred. In addition, scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDS) can identify the composition of any anomalies present after de-cap under higher magnification. The removal process of package material can be done either mechanically or chemically depending on the design of the integrated circuit. With ceramic packaging, de-cap is usually done mechanically by chiseling off the top with a fine razor and small hammer. For plastic packaging, de-cap requires chemical etching by strong acids. In this Tech Tips article, de-cap by chemical etching will be outlined step by step.

ACI Technologies, Inc.

Stencil Printing 008004/0201 Aperture Components

Technical Library | 2020-04-14 15:56:32.0

This paper will focus on the application requirements of solder printing small aperture designs, concentrating on 008004 (inch) / 0201 (metric) size components, and the results of a design of experiment printing these challenging apertures. As Moore's law continues to be applied to component miniaturization, the next installment of reduced packaging has arrived in the form of the 008004/0201 for resistors and capacitors. Component size roughly the size of a grain of sand presents specific challenges to the solder printing process. To address these challenges, each aspect of the printing process will need be examined. This includes essential machine requirements, including correct squeegee blades, tooling support, and calibrations, to meet the demanding specifications. The correct match and design of materials will be addressed, focusing on the stencil and substrate design along with solder paste and cleaning solvent requirements. A design of experiment will be reviewed that applies the machine and materials discussed, including the printer and Solder Paste Inspection (SPI) setup and the specific machine parameters used. The results of these DOE's will then be closely examined.

ITW EAE

Ball Grid Array (BGA) Voiding Affecting Functionality

Technical Library | 2020-11-09 16:59:53.0

A customer contacted ACI Technologies regarding a high failure rate of their assemblies. They provided assemblies to be X-rayed and inspected for the purpose of identifying any process related issues such as (but not limited to) solder and assembly workmanship and evidence of damage due to moisture related problems during reflow (a.k.a. "popcorning"). Moisture damage usually appears as physical damage to the component. The first indication of moisture damage would be externally observable changes to the package in the form of bulging or fractures to the outer surface of the component, an example of which is shown in Figure 1. Internally observable indicators of moisture damage typically include fractures to the die inside the package and lifted or fractured wire bonds. These conditions would be apparent during transmissive X-ray inspection. Another symptom of moisture related damage would be inconsistent solder joint sizes that result from package deformation during the liquidus phase of the reflow process. None of these indicators of moisture related damage were present on the customer samples.

ACI Technologies, Inc.

Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA

Technical Library | 2023-11-09 08:53:45.0

Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA In the intricate realm of electronics manufacturing, selecting the ideal SMT conformal coating line can seem like a challenging quest. The pursuit of a solution that seamlessly integrates efficiency, reliability, and performance is the ultimate goal. In this article, we embark on a journey to unravel the secrets of a standard SMT conformal coating line, using a captivating visual guide as our compass. The Symphony Of Components In An SMT Conformal Coating Line Picture a finely orchestrated symphony, with each instrument playing a unique role in this PCB coating process. The star performers in this lineup include: Transfer Conveyor: These act as the stage where the PCB's journey begins. Think of them as the entry and exit points for your precious boards, allowing a smooth, choreographed dance through the line. 1st Coating Machine: As the first movement in this musical journey, this machine, partnered with the initial curing station, lays down the foundation – applying adhesive to one side of the PCB. Inspection Conveyor: After the initial curing, our inspectors take center stage, using these transfer stations to carefully evaluate the coating's quality. 1st Curing Oven: This is where the magic happens. The first curing oven solidifies the adhesive applied in the previous act, setting the tone for a flawless performance. Flipper Machine: The flipper machine takes the spotlight, gracefully turning the PCB to reveal its other side, ensuring both faces receive their share of adhesion. 2nd Coating Machine: With a newfound perspective, the second coating machine takes the stage, applying adhesive to the reverse side of the PCB. 2nd Curing Oven: The grand finale! The second curing oven brings our symphony to a breathtaking close, solidifying the adhesive applied in the second act, creating a harmonious, dual-sided masterpiece. Efficiency Meets Dual-Side Coating This SMT conformal coating line is like a well-choreographed ballet that requires at least two dancers. One stands at the front, carefully loading PCBs onto the stage, guiding them through the first act. After the flip, the second dancer carries them through the second act, with both sides perfectly coated, ensuring a flawless performance for applications requiring dual-sided adhesion. UV Curing Oven For Illuminating Results For applications that embrace UV-curable adhesives, our line includes UV curing ovens, adding a layer of brilliance to the process and ensuring an efficient solidification of adhesives. Transfer Stations With A Touch Of Magic Within this symphony, the transfer stations wear a touch of magic – the second and fourth stations feature enchanting blue glass covers illuminated by embedded LED lights. These stations offer operators a clear view of the adhesive quality, allowing for meticulous inspections. The blue glass covers also act as protective shields, guarding freshly coated PCBs from the ever-present dust fairies. Certified Excellence: European Standards And CE Certification Ensuring that our performance meets the highest standards, our entire ensemble adheres to stringent European safety standards and proudly boasts CE certification, a testament to compliance with safety, health, and environmental protection requirements. A Variety Of Coating Machines For Your Unique Needs Our lineup doesn't just feature one star, but an ensemble of coating machines, including models like I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. For an encore performance with detailed specifications of each model, please refer to our dedicated article. Additionally, for a captivating exploration of the right coating valve for your adhesive, please visit our comprehensive guide. Single-Sided PCB Coating For those who prefer a single board, our dedicated article on single-sided PCB coating is a spotlight on this specialized process. In the dynamic world of electronics manufacturing, our SMT conformal coating line stands as a versatile and reliable performance. With dual-sided coating capabilities, adherence to European safety standards, and CE certification, we offer a comprehensive platform for your coating needs. Join us in this symphony and explore our range of coating machines and accessories to enhance your conformal coating process. It's a performance that promises to leave you in awe!

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Solder Paste for BGA Rework | Multiple Methods for Applying Paste Flux

Technical Library | 2017-03-30 18:34:52.0

There are multiple methods, each with its associated benefits for given applications, for printing either solder paste or paste flux for BGA rework. Each of these methods is best-suited for a given situation, board layout and skill level of operators performing the BGA rework. This discussion will layout the various methods and present the specific circumstances for which the specific technique is most wellsuited. In addition, the pluses and minuses for each of the approaches will be discussed in detail.

BEST Inc.

Lead-Free BGA Rework-Transition Issues

Technical Library | 2007-08-16 13:34:31.0

While experienced inspectors may be able to determine the aesthetic differences between a lead-free PCB assembly and a tin-lead version, one cannot rely on the "experienced eye". "Less wetting out to the pad edges" (Figure A) and "graininess and lack of shininess of the solder joint" (Figure B) are typical comments about some lead-free solder joints. However, in cases where a Nitrogen atmosphere was present during the reflow of the solder joint (Figure C), there will be little visual differences between the lead free alloys and their tin-lead counterparts.

BEST Inc.

  1 2 3 4 5 6 7 8 9 10 Next

presented searches for Companies, Equipment, Machines, Suppliers & Information

SMTAI 2024 - SMTA International

High Precision Fluid Dispensers
Selective Soldering Nozzles

High Throughput Reflow Oven
PCB Handling Machine with CE

World's Best Reflow Oven Customizable for Unique Applications
SMT feeders

Component Placement 101 Training Course
PCB separator

Low-cost, self-paced, online training on electronics manufacturing fundamentals