Technical Library: print head pin setting (Page 1 of 1)

Basics of Ball Grid Arrays (BGAs)

Technical Library | 2015-02-05 23:23:40.0

Ball grid arrays are the boon and bane of engineers and printed circuit board designers the world over. Their unparalleled pin density and low lead inductance are essential in today's high pin count, high frequency integrated circuits. However, that same pin density and unique interface create a challenge unique unto themselves. These challenges need to be faced head on since the ball grid array (BGA) is prevalent in modern PCBs. While there are entire textbooks that cover the topic of BGAs, their use and fanout techniques, the quick overview provided here offers an engineer a good starting point for improving BGA designs.

Advanced Assembly, LLC.

Enclosed Media Printing as an Alternative to Metal Blades

Technical Library | 2015-08-06 19:17:53.0

Fine pitch/fine feature solder paste printing in PCB assembly has become increasingly difficult as board geometries have become ever more compact. The printing process itself, traditionally the source of 70% of all assembly defects, finds its process window narrowing. The technology of metal blade squeegees, with the aid of new materials, understanding, and settings such as blade angle, has kept pace with all but the smallest applications, e.g., 200μ - .50 AR and 150μ - .375 AR, which have been pushing blade printing technology to its limits. Enclosed media print head technology has existed, and has been under increasing development, as an alternative to metal squeegee blade printing. Until recently, the performance of enclosed print heads had been comparable to the very best metal squeegees, but advances in enclosed print media technology have now made it a superior alternative to squeegee blades in virtually all applications.

Speedline Technologies, Inc.

Solutions for Selective Soldering of High Thermal Mass and Fine-Pitch Components

Technical Library | 2020-05-07 03:46:27.0

The selective soldering process has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty, however some types of challenging components require additional attention to ensure optimum quality control is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures and/or pallets often places an additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors,can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues due to their beryllium copper termination pins.

SELECT Products | Nordson Electronics Solutions

Techniques for Selective Soldering High Thermal Mass and Fine-Pitch Components

Technical Library | 2022-08-08 15:06:06.0

Selective soldering has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty however some types of challenging components require additional attention to ensure that optimum quality is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures, or solder pallets, often places additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors, can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues because of their beryllium copper base metal pins. Key Terms: Selective soldering, drop-jet fluxing, sustained preheating, flux migration, adjacent clearance, lead-to-hole aspect ratio, lead projection, thermal reliefs, gold embrittlement, solderability testing.

Hentec Industries, Inc. (RPS Automation)

  1  

print head pin setting searches for Companies, Equipment, Machines, Suppliers & Information

Global manufacturing solutions provider

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
convection smt reflow ovens

World's Best Reflow Oven Customizable for Unique Applications
High Throughput Reflow Oven

Wave Soldering 101 Training Course
Hot selling SMT spare parts and professional SMT machine solutions

Thermal Transfer Materials.