Technical Library: process parameters characterization (Page 1 of 7)

THE EFFECT OF VACUUM REFLOW PROCESSING ON SOLDER JOINT VOIDING AND THERMAL FATIGUE RELIABILITY

Technical Library | 2023-01-17 17:19:44.0

A test program was developed to evaluate the effectiveness of vacuum reflow processing on solder joint voiding and subsequent thermal cycling performance. Area array package test vehicles were assembled using conventional reflow processing and a solder paste that generated substantial void content in the solder joints. Half of the population of test vehicles then were re-processed (reflowed) using vacuum reflow. Transmission x-ray inspection showed a significant reduction in solder voiding after vacuum processing. The solder attachment reliability of the conventional and vacuum reflowed test vehicles was characterized and compared using two different accelerated thermal cycling profiles. The thermal cycling results are discussed in terms of the general impact of voiding on solder thermal fatigue reliability, results from the open literature, and the evolving industry standards for solder voiding. Recommendations are made for further work based on other void reduction methods and additional reliability studies.

Heller Industries Inc.

Optimizing Reflowed Solder TIM (sTIMs) Processes for Emerging Heterogeneous Integrated Packages

Technical Library | 2023-01-17 17:12:33.0

Reflowed indium metal has for decades been the standard for solder thermal interface materials (solder TIMs or sTIMs) in most high-performance computing (HPC) TIM1 applications. The IEEE Heterogeneous Integration Thermal roadmap states that new thermal interface materials solutions must provide a path to the successful application of increased total-package die areas up to 100cm2. While GPU architectures are relatively isothermal during usage, CPU hotspots in complex heterogeneously-integrated modules will need to be able to handle heat flux hotspots up to 1000W/cm2 within the next two years. Indium and its alloys are used as reflowed solder thermal interface materials in both CPU and GPU "die to lid/heat spreader" (TIM1) applications. Their high bulk thermal conductivity and proven long-term reliability suit them well for extreme thermomechanical stresses. Voiding is the most important failure mode and has been studied by x-ray. The effects of surface pretreatment, pressure during reflow, solder flux type/fluxless processing, and preform design parameters, such as alloy type, are also examined. The paper includes data on both vacuum and pressure (autoclave) reflow of sTIMs, which is becoming necessary to meet upcoming requirements for ultralow voiding in some instances.

Heller Industries Inc.

Conformal Coating Process Characterization Considerations

Technical Library | 2013-09-25 20:57:24.0

Conformal coating is an enabling process that allows for the ruggedizing of electronic devices and modules. As the process increases the durability of electronics that are subjected to various end-use environmental conditions, it adds value to the product. While it does add value, consumers and manufacturers expect the electronics to work when subjected to dirt, humidity, moisture, corrosive materials, and various other contaminants. This expectation results in a drive to minimize the cost of the process. The lowest cost of ownership for a conformal coating process occurs by utilizing automated selective conformal coating equipment.

ASYMTEK Products | Nordson Electronics Solutions

Conductive Adhesive Dispensing, Process Considerations

Technical Library | 1999-08-27 09:24:56.0

Dispensing conductive adhesives in an automated factory environment creates some special challenges. A robust production process starts with understanding the adhesives in their fluid state and which important parameters must be controlled. Developing this understanding requires experience with a large number of materials and valves over time. Common uses of conductive adhesives in surface mount applications, die attach applications, and gasketing are addressed. As vendors of dispensing equipment, the authors see a constant stream of such applications. Dispensing requirements, techniques, and equipment resulting from this experience are discussed. Guidelines for optimizing quality and speed are given.

ASYMTEK Products | Nordson Electronics Solutions

Micro-Sectioning of PCBs for Failure Analysis

Technical Library | 2010-01-13 12:34:10.0

Micro-sectioning (sometimes referred to as cross-sectioning)is a technique, used to characterize materials or to perform a failure mode analysis, for exposing an internal section of a PCB or package. Destructive in nature, cross-sectioning requires encapsulation of the specimen in order to provide support, stability, and protection. Failures that can be investigated through micro-sectional analysis include component defects, thermo-mechanical failures, processing failures related to solder reflow, opens or shorts, voiding and raw material evaluations.

BEST Inc.

Quieting the Noise: Quality Wave Soldering Depends on Control of Its Many Parameters.

Technical Library | 2008-01-24 16:19:43.0

The wave solder process is characterized by a large number of process parameters. To understand them all and their interactions is challenging, particularly when it comes to lead-free soldering. Wave soldering has a number of sub-processes, which include fluxing, preheating, soldering and cooling.

Vitronics Soltec

The Evolution of Intel's Copy EXACTLY! Technology Transfer Method

Technical Library | 1999-05-06 14:46:09.0

Semiconductor manufacturing is characterized by very complex process flows made up of individual process steps, many of which are built to very close tolerances. Furthermore, there are complex interactions in these process flows, whereby each process step can affect many other steps, and each final device parameter might be determined by the results from many inputs...

Intel Corporation

Silicon Test Wafer Specification for 180 nm Technology

Technical Library | 1999-08-05 10:45:36.0

In 1998, the International 300 mm Initiative (I300I) demonstration and characterization programs will focus on 180 nm technology capability. To support these activities, I300I and equipment supplier demonstration partners must use starting silicon wafers with key parameters specified at a level appropriate level for 180 nm processing, including contamination and lithographic patterning. This document describes I300I's silicon wafer specifications, as developed with the I300I Silicon Working Group (member company technical advisors) and SEMI Standards.

SEMATECH

Implementing Robust Bead Probe Test Processes into Standard Pb-Free Assembly

Technical Library | 2015-08-20 15:18:38.0

Increasing system integration and component densities continue to significantly reduce the opportunity to access nets using standard test points. Over time the size of test points has been drastically reduced (as small as 0.5 mm in diameter) but current product design parameters have created space and access limitations that remove even the option for these test points. Many high speed signal lines have now been restricted to inner layers only. Where surface traces are still available for access, bead probe technology is an option that reduces test point space requirements as well as their effects on high speed nets and distributes mechanical loading away from BGA footprints enabling test access and reducing the risk of mechanical defects associated with the concentration of ICT spring forces under BGA devices. Building on Celestica's previous work characterizing contact resistance associated with Pr-free compatible surface finishes and process chemistry; this paper will describe experimentation to define a robust process window for the implementation of bead probe and similar bump technology that is compatible with standard Pb-free assembly processes. Test Vehicle assembly process, test methods and "Design of Experiments" will be described. Bead Probe formation and deformation under use will also be presented along with selected results.

Celestica Corporation

Use of Non Etching Adhesion Promoters in Advanced PCB Applications

Technical Library | 2011-06-16 18:59:43.0

Based on tests carried out with commercially available chemistry, this paper discusses the advantages available through the use of NEAP processes for inner layer bonding and soldermask pretreatment. The process is characterized with a view to high volume

Atotech

  1 2 3 4 5 6 7 Next

process parameters characterization searches for Companies, Equipment, Machines, Suppliers & Information

2024 Eptac IPC Certification Training Schedule

High Precision Fluid Dispensers
Sell Used SMT & Test Equipment

High Throughput Reflow Oven
Software for SMT

World's Best Reflow Oven Customizable for Unique Applications
SMT feeders

Stencil Printing 101 Training Course
PCB Depanelizers

Training online, at your facility, or at one of our worldwide training centers"