Technical Library: protect korea underfill (Page 1 of 1)

Throughput vs. Wet-Out Area Study for Package on Package (PoP) Underfill Dispensing

Technical Library | 2012-12-17 22:05:22.0

Package on Package (PoP) has become a relatively common component being used in mobile electronics as it allows for saving space in the board layout due to the 3D package layout. To insure device reliability through drop tests and thermal cycling as well as for protecting proprietary programming of the device either one or both interconnect layers are typically underfilled. When underfill is applied to a PoP, or any component for that matter, there is a requirement that the board layout is such that there is room for an underfill reservoir so that the underfill material does not come in contact with surrounding components. The preferred method to dispensing the underfill material is through a jetting process that minimizes the wet out area of the fluid reservoir compared to traditional needle dispensing. To further minimize the wet out area multiple passes are used so that the material required to underfill the component is not dispensed at once requiring a greater wet out area. Dispensing the underfill material in multiple passes is an effective way to reduce the wet out area and decrease the distance that surrounding components can be placed, however, this comes with a process compromise of additional processing time in the underfill dispenser. The purpose of this paper is to provide insight to the inverse relationship that exists between the wet out area of the underfill reservoir and the production time for the underfill process.

ASYMTEK Products | Nordson Electronics Solutions

Selective protection for PCBs

Technical Library | 2020-02-18 09:56:24.0

Glob Top, Dam and Fill & Flit Chip Underfill To protect PCBs from damaging outside influences, they are coated with a thin layer of casting resin or protective finish during the conformal coating process. In addition to sealing the entire circuit board, it is possible to pot only sections or individual components on the substrate. Different methods ranging from "glob top" to "dam and fill" and "flip chip underfill" have been developed for this purpose.

Scheugenpflug Inc.

Impact of FPC Fabrication Process on SMT Reliability

Technical Library | 2013-12-05 17:09:03.0

The functionality of electronic devices continues to increase at an extraordinary rate. Simultaneously consumers are expecting even more and in ever smaller packages. One enabler for shrinking electronics has been the flexible circuit board that allows the circuit board to fit a wide variety of shapes. Flexible printed circuits (FPC) have the capability to be very thin and can have unpackaged components directly attached using surface mount technology (SMT) and flip chip on flex technologies. Bare die can also be thinned and attached very close to the circuit board. However one caveat of high density flexible circuit boards with thin die is that they can be very fragile. The use of back side films and underfill can protect the die making circuits more robust. For underfill to work well it requires good adhesion to the circuit board which can mean that flux residues under the die normally must be removed prior to underfilling.

Starkey Hearing Technologies

Effect of Encapsulation Materials on Tensile Stress during Thermo-Mechanical Cycling of Pb-Free Solder Joints

Technical Library | 2019-03-06 21:26:14.0

Electronic assemblies use a large variety of polymer materials with different mechanical and thermal properties to provide protection in harsh usage environments. However, variability in the mechanical properties such as the coefficient of thermal expansion and elastic modulus effects the material selection process by introducing uncertainty to the long term impacts on the reliability of the electronics. Typically, the main reliability issue is solder joint fatigue which accounts for a large amount of failures in electronic components. Therefore, it is necessary to understand the effect of polymer encapsulations (coatings, pottings and underfills) on the solder joints when predicting reliability.This paper presents the construction and validation of a thermo-mechanical tensile fatigue specimen. The thermal cycling range was matched with potting expansion properties in order to vary the magnitude of tensile stress imposed on solder joints

DfR Solutions

  1  

protect korea underfill searches for Companies, Equipment, Machines, Suppliers & Information

Heller Korea Ltd.
Heller Korea Ltd.

-세계 최고 품질의 대류열풍방식으로 새로운 표준을 선도하는 HELLER Reflow Oven -10년 연속 World Wide Market Share 1위와 2014 SERVICE EXCELLENCE AWARDS 수상

Manufacturer

459-1 Jangji-Dong, Kwangju-Si
Kyungki-Do, 13 South Korea

Phone: +82-31-769-0808

Electronic Solutions

Reflow Soldering 101 Training Course
pressure curing ovens

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
convection smt reflow ovens

World's Best Reflow Oven Customizable for Unique Applications