Technical Library: proximity (Page 1 of 1)

Corrosion Analysis

Technical Library | 2019-06-03 15:32:40.0

ACI Technologies was pleased to assist a customer by conducting elemental analysis on several assemblies displaying severe corrosion. Several board assemblies had failed in the field and exhibited areas of corrosion in close proximity to onboard components. The most common source of corrosion on electronic assemblies is residual flux. Fluxes are specific chemistries applied during the soldering process which improve the wetting of the solder to both the pad and component when forming the solder joint. They can be highly reactive chemicals that, if left on the assemblies, can lead to corrosion, electrical degradation, and decreased reliability. In the presence of moisture and electrical bias, flux residue can enable dendritic growth as a result of electrochemical migration (ECM).

ACI Technologies, Inc.

The Proximity of Microvias to PTHs And Its Impact On The Reliability

Technical Library | 2007-05-09 18:26:16.0

High Density Interconnect (HDI) technology is fast becoming the enabling technology for the next generation of small portable electronic communication devices. These methods employ many different dielectrics and via fabrication technologies. In this research, the effect of the proximity of microvias to Plated Through Holes (PTHs) and its effect on the reliability of the microvias was extensively evaluated. The reliability of microvia interconnect structures was evaluated using Liquid-To-Liquid Thermal Shock (LLTS) testing (-55oC to +125oC). Comprehensive failure analysis was performed on microvias fabricated using different via fabrication technologies.

Universal Instruments Corporation

The EMS Gateway Model - Local to Global, Seamlessly

Technical Library | 2019-04-24 20:06:51.0

Choosing an outsourced manufacturing partner that is perfect for a new product and close to your design team is quite different to choosing a partner that can manufacture that same product in volume in lower cost locations and fulfill globally. This is where the Gateway model comes into its own. Most large EMS have structured their organizations to leverage proximity to OEM design teams in high cost regions while providing the benefits of low cost regions for volume manufacturing. The "Gateway" facility in higher cost regions provides design engineering, supply chain design, prototype, and NPI services. The goal of the Gateway is to develop an effective build recipe that can then be effectively and seamlessly transferred to one or more volume manufacturing facility that offers lower costs and direct fulfillment to consumers.We will present a case study that highlights the value of this model and that shows some of the key elements that allow for seamless transitions from plant to plant. The Gateway model is an essential element to a successful global manufacturing model and helps ensure that products are made in the right geography.

ZOLLNER ELECTRONICS, INC.

Origin and Quantification of Increased Core Loss in MnZn Ferrite Plates of a Multi-Gap Inductor

Technical Library | 2019-11-07 08:59:14.0

Inductors realized with high permeable MnZn ferrite require, unlike iron-powder cores with an inherent dis-tributed gap, a discrete air gap in the magnetic circuit to prevent saturation of the core material and/or tune the inductance value. This large discrete gap can be divided into several partial gaps in order to reduce the air gap stray field and consequently the proximity losses in the winding. The multi-gap core, realized by stacking several thin ferrite plates and inserting a non-magnetic spacer material between the plates, however, exhibits a substan-tial increase in core losses which cannot be explained from the intrinsic properties of the ferrite. In this paper, a comprehensive overview of the scientific literature regarding machining induced core losses in ferrite, dating back to the early 1970s, is provided which suggests that the observed excess core losses could be attributed to a deterioration of ferrite properties in the surface layer of the plates caused by mechanical stress exerted during machining.

Power Electronic Systems Laboratory (PES)

Creating Reusable Manufacturing Tests for High-Speed I/O with Synthetic Instruments

Technical Library | 2020-07-08 20:05:59.0

There is a compelling need for functional testing of high-speed input/output signals on circuit boards ranging from 1 gigabit per second (Gbps) to several hundred Gbps. While manufacturing tests such as Automatic Optical Inspection (AOI) and In-Circuit Test (ICT) are useful in identifying catastrophic defects, most high-speed signals require more scrutiny for failure modes that arise due to high-speed conditions, such as jitter. Functional ATE is seldom fast enough to measure high-speed signals and interpret results automatically. Additionally, to measure these adverse effects it is necessary to have the tester connections very close to the unit under test (UUT) as lead wires connecting the instruments can distort the signal. The solution we describe here involves the use of a field programmable gate array (FPGA) to implement the test instrument called a synthetic instrument (SI). SIs can be designed using VHDL or Verilog descriptions and "synthesized" into an FPGA. A variety of general-purpose instruments, such as signal generators, voltmeters, waveform analyzers can thus be synthesized, but the FPGA approach need not be limited to instruments with traditional instrument equivalents. Rather, more complex and peculiar test functions that pertain to high-speed I/O applications, such as bit error rate tests, SerDes tests, even USB 3.0 (running at 5 Gbps) protocol tests can be programmed and synthesized within an FPGA. By using specific-purpose test mechanisms for high-speed I/O the test engineer can reduce test development time. The synthetic instruments as well as the tests themselves can find applications in several UUTs. In some cases, the same test can be reused without any alteration. For example, a USB 3.0 bus is ubiquitous, and a test aimed at fault detection and diagnoses can be used as part of the test of any UUT that uses this bus. Additionally, parts of the test set may be reused for testing another high-speed I/O. It is reasonable to utilize some of the test routines used in a USB 3.0 test, in the development of a USB 3.1 (running at 10 Gbps), even if the latter has substantial differences in protocol. Many of the SI developed for one protocol can be reused as is, while other SIs may need to undergo modifications before reuse. The modifications will likely take less time and effort than starting from scratch. This paper illustrates an example of high-speed I/O testing, generalizes failure modes that are likely to occur in high-speed I/O, and offers a strategy for testing them with SIs within FPGAs. This strategy offers several advantages besides reusability, including tester proximity to the UUT, test modularization, standardization approaching an ATE-agnostic test development process, overcoming physical limitations of general-purpose test instruments, and utilization of specific-purpose test instruments. Additionally, test instrument obsolescence can be overcome by upgrading to ever-faster and larger FPGAs without losing any previously developed design effort. With SIs and tests scalable and upward compatible, the test engineer need not start test development for high-speed I/O from scratch, which will substantially reduce time and effort.

A.T.E. Solutions, Inc.

  1  

proximity searches for Companies, Equipment, Machines, Suppliers & Information

Selective soldering solutions with Jade soldering machine

High Precision Fluid Dispensers
Selective soldering solutions with Jade soldering machine

High Throughput Reflow Oven
Best SMT Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications


"回流焊炉"