Technical Library: pure tin solderability (Page 1 of 6)

THE LAST WILL AND TESTAMENT OF THE BGA VOID

Technical Library | 2023-01-17 17:22:28.0

The impact of voiding on the solder joint integrity of ball grid arrays (BGAs)/chip scale packages (CSPs) can be a topic of lengthy and energetic discussion. Detailed industry investigations have shown that voids have little effect on solder joint integrity unless they fall into specific location/geometry configurations. These investigations have focused on thermal cycle testing at 0°C-100°C, which is typically used to evaluate commercial electronic products. This paper documents an investigation to determine the impact of voids in BGA and CSP components using thermal cycle testing (-55°C to +125°C) in accordance with the IPC- 9701 specification for tin/lead solder alloys. This temperature range is more typical of military and other high performance product use environments. A proposed BGA void requirement revision for the IPC-JSTD-001 specification will be extracted from the results analysis.

Heller Industries Inc.

Tin Whiskers: Risks with Lead Free | Part I

Technical Library | 2019-06-19 11:06:46.0

Tin (Sn) metal displays the characteristic of growing “tin whiskers” from pure tin coatings (most actively on relatively thin, electrodeposited or immersion tin coatings), usually months or years from the initial deposition of the tin. Tin whiskers are electrically conductive, filamentary, single crystals of white (beta phase) tin. These filaments of single crystal tin are usually one to five microns in diameter, and a few microns up to several tens of millimeters long, that grow spontaneously from the tin coatings. Alloying additions of several percent (by weight) of lead (Pb) prevents these electrically conductive tin whiskers from growing. Pb alloyed into the Sn was discovered to prevent the occurrence of tin whiskers in electronic assemblies in the 1950s as the Bell Laboratories solution to the problem of tin whiskers. The alloying of the tin with lead has thus quietly averted incalculable losses from short circuits in electronic equipment for the last 60 years.

ACI Technologies, Inc.

Tin Whiskers: Mitigation with Conformal Coatings | Part II

Technical Library | 2019-06-20 07:45:19.0

One of the two basic risks of employing the commercially accepted, Restriction of Hazardous Substances (RoHS) compliant, lead-free (Pb-free) electronics is the threat to the electronics reliability from the growth of tin whiskers. The other basic risk deals with Pb-free solder joint reliability.

ACI Technologies, Inc.

Lead-Free Risk Mitigation -- A Case Study

Technical Library | 2020-07-01 19:45:04.0

A company approached ACI Technologies (ACI) for assistance with a new product that was about to undergo its initial proof-of-concept prototype build. This product was an item that was being furnished to the Department of Defense for a program designed to increase the technical capabilities of computer equipment issued to the war fighter. The requirements for this item specified the use of tin-lead solder during assembly of production units. One of the main responsibilities for ACI during this project was to assist the client in mitigating the risk introduced using commercial off-the-shelf materials that may be lead-free.

ACI Technologies, Inc.

Investigation of PCB Failure after SMT Manufacturing Process

Technical Library | 2019-10-21 09:58:50.0

An ACI Technologies customer inquired regarding printed circuit board(PCB) failures that were becoming increasingly prevalent after the SMT (surface mount technology) manufacturing process. The failures were detected by electrical testing, but were undetermined as to the location and specific devices causing the failures. The failures were suspected to be caused predominately in the BGA (ball grid array) devices located on specific sites on this 16 layer construction. Information that was provided on the nature of the failures (i.e., opens or shorts) included high resistance shorts that were occurring in those specified areas. The surface finish was a eutectic HASL (hot air solder leveling) and the solder paste used was a water soluble Sn/Pb(tin/lead).

ACI Technologies, Inc.

Precision Control in Electronic Assembly: Selective Wave Soldering Machine

Technical Library | 2024-02-26 09:08:23.0

Precision Control in Electronic Assembly: Selective Wave Soldering Machine Discover the technical features of I.C.T's Selective Wave Soldering Machines, including precision flux application and innovative preheating systems. Learn how these machines redefine efficiency and reliability in electronic assembly. Introduction: Enhancing Precision Soldering: Technical Features of Selective Wave Soldering Machines by I.C.T Explore the innovative design and operation of I.C.T's Selective Wave Soldering Machines, featuring a seamless PCB handling system and modular design for enhanced assembly line flexibility. Experience precision control and efficiency with comprehensive PC controls, allowing easy adjustment of solder parameters like temperature and flux type. Automatic calibration and CCD mark positioning ensure consistent soldering quality. Detail Excellence: Enhancing Selective Wave Soldering Technology Flux System Mastery German high-frequency pulse injection valve ensures precise flux application. Optional flux nozzle jam detection simplifies maintenance. Pressure tank and precision pressure flow meter ensure consistent flux control. Preheat System Excellence Bottom IR preheating system ensures stability and efficiency. Maintenance is simplified with a tool-free mode and plug-in design. Soldering System Innovation Swedish "PRECIMETER" electromagnetic pump coil ensures stability. Stainless steel soldering pot prevents tin liquid leakage. N2 online heating system reduces solder dross. Transmission System Mastery Specially designed material profiles ensure operational stability. Thickened customized rails guarantee flawless operation. Control and Intelligence Keyence PLC+module high-end bus control system ensures stability. Industry 4.0 compliance allows guided programming and real-time data visualization. Market Promotion and Success Stories: Elevating Selective Wave Soldering Machine I.C.T's strategic market positioning has led to global success across diverse industries. Success stories from European clients highlight reliability and trust in the machine. Over 70 units sold across 20+ countries since 2022, establishing its industry-leading position. Conclusion Conclusion: I.C.T's Selective Wave Soldering Machine combines technical excellence with global market success, solidifying its leadership in precision soldering technology.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Lead-Free BGA Rework-Transition Issues

Technical Library | 2007-08-16 13:34:31.0

While experienced inspectors may be able to determine the aesthetic differences between a lead-free PCB assembly and a tin-lead version, one cannot rely on the "experienced eye". "Less wetting out to the pad edges" (Figure A) and "graininess and lack of shininess of the solder joint" (Figure B) are typical comments about some lead-free solder joints. However, in cases where a Nitrogen atmosphere was present during the reflow of the solder joint (Figure C), there will be little visual differences between the lead free alloys and their tin-lead counterparts.

BEST Inc.

Mitigation of Pure Tin Risk by Tin-Lead SMT Reflow- Results of an Industry Round-Robin

Technical Library | 2017-10-12 15:45:25.0

The risk associated with whisker growth from pure tin solderable terminations is fully mitigated when all of the pure tin is dissolved into tin-lead solder during SMT reflow. In order to take full advantage of this phenomenon, it is necessary to understand the conditions under which such coverage can be assured. A round robin study has been performed by IPC Task group 8-81f, during which identical sets of test vehicles were assembled at multiple locations, in accordance with IPC J-STD-001, Class 3. All of the test vehicles were analyzed to determine the extent of complete tin dissolution on a variety of component types. Results of this study are presented together with relevant conclusions and recommendations to guide high reliability end-users on the applicability and limitations of this mitigation strategy.

Raytheon

Effects of Tin Whisker Formation on Nanocrystalline Copper

Technical Library | 2023-02-13 19:23:18.0

Spontaneously forming tin whiskers, which emerge unpredictably from pure tin surfaces, have regained prevalence as a topic within the electronics research community. This has resulted from the ROHS-driven conversion to "lead-free" solderable finish processes. Intrinsic stresses (and/or gradients) in plated films are considered to be a primary driving force behind the growth of tin whiskers. This paper compares the formation of tin whiskers on nanocrystalline and conventional polycrystalline copper deposits. Nanocrystalline copper under-metal deposits were investigated, in terms of their ability to mitigate whisker formation, because of their fine grain size and reduced film stress. Pure tin films were deposited using matte and bright electroplating, electroless plating, and electron beam evaporation. The samples were then subjected to thermal cycling conditions in order to expedite whisker growth. The resultant surface morphologies and whisker formations were evaluated.

Johns Hopkins Applied Physics Laboratory

Effects of Tin and Copper Nanotexturization on Tin Whisker Formation

Technical Library | 2012-08-16 22:38:05.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. The physical mechanisms behind tin whisker formation in pure tin (Sn) films continue to elude the microelectronics industry. Despite modest advances in whisker mitigation techniqu

Johns Hopkins Applied Physics Laboratory

  1 2 3 4 5 6 Next

pure tin solderability searches for Companies, Equipment, Machines, Suppliers & Information