Technical Library: qfn solder balls (Page 7 of 7)

Going Lead Free With Vapor Phase Soldering - Lead Free Is Still a Challenge For Major Industries.

Technical Library | 2014-01-30 18:08:04.0

As of today, the electronic industry is aware of the requirements for their products to be lead free. All components are typically available in lead free quality. This comprises packages like BGAs with BGA solder balls to PCB board finishes like HASL. The suppliers are providing everything that is needed. It is harder to get the old tin leaded (SnPb) components for new applications today, than lead free ones. So why has not everybody changed over fully yet and how can the challenges be overcome? A big concern in this transition process is reflow soldering. The process temperatures for lead free applications became much higher. Related with this is more stress for all the components. It affects the quality and reliability of the electronic units and products...

IBL - Löttechnik GmbH

Effects of Package Warpage on Head-in-Pillow Defect

Technical Library | 2017-07-06 15:50:17.0

Head-in-pillow (HiP) is a BGA defect which happens when solder balls and paste can't contact well during reflow soldering. Package warpage was one of the major reasons for HiP formation. In this paper, package warpage was measured and simulated. It was found that the package warpage was sensitive to the thickness of inside chips. A FEM method considering viscoelastic property of mold compound was introduced to simulate package warpage. The CTE mismatch was found contributes to more than 90% of the package warpage value when reflowing at the peak temperature. A method was introduced to measure the warpage threshold, which is the smallest warpage value that may lead to HiP. The results in different atmospheres showed that the warpage threshold was 50μm larger in N2 than that in air, suggesting that under N2 atmosphere the process window for HiP defects was larger than that under air, which agreed with the experiments.

Samsung Electronics

The Risk And Solution For No-Clean Flux Not Fully Dried Under Component Terminations the Risk And Solution For No-Clean Flux Not Fully Dried Under Component Terminations

Technical Library | 2020-11-24 23:01:04.0

The miniaturization trend is driving industry to adopting low standoff components or components in cavity. The cost reduction pressure is pushing telecommunication industry to combine assembly of components and electromagnetic shield in one single reflow process. As a result, the flux outgassing/drying is getting very difficult for devices due to poor venting channel. This resulted in insufficiently dried/burnt-off flux residue. For a properly formulated flux, the remaining flux activity posed no issue in a dried flux residue for no-clean process. However, when venting channel is blocked, not only solvents remain, but also activators could not be burnt off. The presence of solvents allows mobility of active ingredients and the associated corrosion, thus poses a major threat to the reliability. In this work, a new halogen-free no-clean SnAgCu solder paste, 33-76-1, has been developed. This solder paste exhibited SIR value above the IPC spec 100 MΩ without any dendrite formation, even with a wet flux residue on the comb pattern. The wet flux residue was caused by covering the comb pattern with 10 mm × 10 mm glass slide during reflow and SIR testing in order to mimic the poorly vented low standoff components. The paste 33-76-1 also showed very good SMT assembly performance, including voiding of QFN and HIP resistance. The wetting ability of paste 33-76-1 was very good under nitrogen. For air reflow, 33-76-1 still matched paste C which is widely accepted by industry for air reflow process. The above good performance on both non-corrosivity with wet flux residue and robust SMT process can only be accomplished through a breakthrough in flux technology.

Indium Corporation

The Effect of Pb Mixing Levels on Solder Joint Reliability and Failure Mode of Backward Compatible, High Density Ball Grid Array Assemblies

Technical Library | 2015-01-08 17:26:59.0

Regardless of the accelerating trend for design and conversion to Pb-free manufacturing, many high reliability electronic equipment producers continue to manufacture and support tin-lead (SnPb) electronic products. Certain high reliability electronic products from the telecommunication, military, and medical sectors manufacture using SnPb solder assembly and remain in compliance with the RoHS Directive (restriction on certain hazardous substances) by invoking the European Union Pb-in-solder exemption. Sustaining SnPb manufacturing has become more challenging because the global component supply chain is converting rapidly to Pb-free offerings and has a decreasing motivation to continue producing SnPb product for the low-volume, high reliability end users. Availability of critical, larger SnPb BGA components is a growing concern

Sanmina-SCI

RELIABLE NICKEL-FREE SURFACE FINISH SOLUTION FOR HIGHFREQUENCY-HDI PCB APPLICATIONS

Technical Library | 2020-08-05 18:49:32.0

The evolution of internet-enabled mobile devices has driven innovation in the manufacturing and design of technology capable of high-frequency electronic signal transfer. Among the primary factors affecting the integrity of high-frequency signals is the surface finish applied on PCB copper pads – a need commonly met through the electroless nickel immersion gold process, ENIG. However, there are well-documented limitations of ENIG due to the presence of nickel, the properties of which result in an overall reduced performance in high-frequency data transfer rate for ENIG-applied electronics, compared to bare copper. An innovation over traditional ENIG is a nickel-less approach involving a special nano-engineered barrier designed to coat copper contacts, finished with an outermost gold layer. In this paper, assemblies involving this nickel-less novel surface finish have been subjected to extended thermal exposure, then intermetallics analyses, contact/sheet resistance comparison after every reflow cycle (up to 6 reflow cycles) to assess the prevention of copper atoms diffusion into gold layer, solder ball pull and shear tests to evaluate the aging and long-term reliability of solder joints, and insertion loss testing to gauge whether this surface finish can be used for high-frequency, high density interconnect (HDI) applications.

LiloTree

Analysis of Laminate Material Properties for Correlation to Pad Cratering

Technical Library | 2016-10-20 18:13:34.0

Pad cratering failure has emerged due to the transition from traditional SnPb to SnAgCu alloys in soldering of printed circuit assemblies. Pb-free-compatible laminate materials in the printed circuit board tend to fracture under ball grid array pads when subjected to high strain mechanical loads. In this study, two Pb-free-compatible laminates were tested, plus one dicycure non-Pb-free-compatible as control. One set of these samples were as-received and another was subjected to five reflows. It is assumed that mechanical properties of different materials have an influence on the susceptibility of laminates to fracture. However, the pad cratering phenomenon occurs at the layer of resin between the exterior copper and the first glass in the weave. Bulk mechanical properties have not been a good indicator of pad crater susceptibility. In this study, mechanical characterization of hardness and Young’s modulus was carried out in the critical area where pad cratering occurs using nano-indentation at the surface and in a cross-section. The measurements show higher modulus and hardness in the Pb-free compatible laminates than in the dicy-cured laminate. Few changes are seen after reflow – which is known to have an effect -- indicating that these properties do not provide a complete prediction. Measurements of the copper pad showed significant material property changes after reflow.

CALCE Center for Advanced Life Cycle Engineering

Previous 2 3 4 5 6 7  

qfn solder balls searches for Companies, Equipment, Machines, Suppliers & Information

Best SMT Reflow Oven

High Throughput Reflow Oven
convection smt reflow ovens

Training online, at your facility, or at one of our worldwide training centers"
pressure curing ovens

World's Best Reflow Oven Customizable for Unique Applications
Baja Bid Auction JUL 9-10, 2024

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
Electronic Solutions R3

500+ original new CF081CR CN081CR FEEDER in stock