Technical Library: qualification (Page 1 of 2)

Effective Qualification of Soldering Iron Performance Criteria

Technical Library | 2012-11-27 14:06:48.0

Quality managers and line supervisors are routinely tasked with the responsibility of ensuring that the hand soldering process is under control. The method most commonly used is to measure the idle tip temperature of the soldering station and to use this reading as a benchmark of system compliance. This method, although popular is now being seriously questioned by many industry professionals as being irrelevant in qualifying true system process control. This document aims to present a practical view of what factors are important for successful hand soldering and to suggest an alternative procedure for qualification that is simple, repeatable and directly related to the effectiveness of the soldering station.

Metcal

Print Performance Studies Comparing Electroform and Laser-Cut Stencils

Technical Library | 2015-11-05 15:09:27.0

There has been recent activity and interest in Laser-Cut Electroform blank foils as an alternative to normal Electroform stencils. The present study will investigate and compare the print performance in terms of % paste transfer as well the dispersion in paste transfer volume for a variety of Electroform and Laser-Cut stencils with and without post processing treatments. Side wall quality will also be investigated in detail. A Jabil solder paste qualification test board will be used as the PCB test vehicle.

Photo Stencil LLC

Evaluation, Selection and Qualification of Replacement Reworkable Underfill Materials

Technical Library | 2019-02-27 15:23:47.0

A study was performed to investigate, evaluate and qualify new reworkable underfill materials to be used primarily with ball grid arrays (BGAs), Leadless SMT devices, QFNs, connectors and passive devices to improve reliability. The supplier of the sole source, currently used underfill, has indicated they may discontinue its manufacture in the near future. The current underfill material is used on numerous circuit card assemblies (CCAs) at several sites and across multiple programs/business areas. In addition, it is used by several of our contract CCA suppliers.The study objectives include evaluation of material properties for down select, dispensability and rework evaluation for further down select, accelerated life testing for final selection and qualification; and process development to implement into production and at our CCA suppliers. The paper will describe the approach used, material property test results and general findings relative to process characteristics and rework ability.

Northrop Grumman Corporation

Qualification Test Development for Creep Corrosion

Technical Library | 2021-04-08 00:34:16.0

Creep corrosion is not a new phenomenon, it has become more prevalent since the enactment of the European Union's Restriction of Hazardous Substance (RoHS) Directive on 1 July 2006. The directive bans the use of lead and other hazardous substances in products (where lead-based surface finishes offered excellent corrosion resistance). The higher melting temperatures of the lead-free solders and their poor wetting of copper metallization on PCBs forced changes to PCB laminates, surface finishes and processing temperature-time profiles. As a result, printed circuit boards might have higher risk of creep corrosion.

iNEMI (International Electronics Manufacturing Initiative)

Soldering Immersion Tin

Technical Library | 2019-04-10 22:08:31.0

The stimulating impact of the automotive industry has sharpened focus on immersion tin (i-Sn) more than ever before. Immersion tin with its associated attributes, is well placed to fulfill the requirements of such a demanding application. In an environment dominated by reliability, the automotive market not only has very stringent specifications but also demands thorough qualification protocols. Qualification is ultimately a costly exercise. The good news is that i-Sn is already qualified by many tier one OSATs. The focus of this paper is to generate awareness of the key factors attributed to soldering i-Sn. Immersion tin is not suitable for wire bonding but ultimately suited for multiple soldering applications. The dominant topics of this paper will be IMC formations in relation to reflow cycles and the associated solderability performance. Under contamination free conditions, i-Sn can provide a solderable finish even after multiple reflow cycles. The reflow conditions employed in this paper are typical for lead free soldering environments and the i-Sn thicknesses are approximately 1 μm.

Atotech

Testing Printed Circuit Boards for Creep Corrosion in Flowers of Sulfur Chamber

Technical Library | 2015-07-16 17:24:23.0

Qualification of electronic hardware from a corrosion resistance standpoint has traditionally relied on stressing the hardware in a variety of environments. Before the development of tests based on mixed flowing gas (MFG), hardware was typically exposed to temperature-humidity cycling. In the pre-1980s era, component feature sizes were relatively large. Corrosion, while it did occur, did not in general degrade reliability. There were rare instances of the data center environments releasing corrosive gases and corroding hardware. One that got a lot of publicity was the corrosion by sulfur-bearing gases given off by data center carpeting. More often, corrosion was due to corrosive flux residues left on as-manufactured printed circuit boards (PCBs) that led to ion migration induced electrical shorting. Ion migration induced failures also occurred inside the PCBs due to poor laminate quality and moisture trapped in the laminate layers.

iNEMI (International Electronics Manufacturing Initiative)

Ultrathin Fluoropolymer Coatings to Mitigate Damage of Printed Circuit Boards Due to Environmental Exposure

Technical Library | 2016-05-19 16:03:37.0

As consumers become more reliant on their handheld electronic devices and take them into new environments, devices are increasingly exposed to situations that can cause failure. In response, the electronics industry is making these devices more resistant to environmental exposures. Printed circuit board assemblies, handheld devices and wearables can benefit from a protective conformal coating to minimize device failures by providing a barrier to environmental exposure and contamination. Traditional conformal coatings can be applied very thick and often require thermal or UV curing steps that add extra cost and processing time compared to alternative technologies. These coatings, due to their thickness, commonly require time and effort to mask connectors in order to permit electrical conductivity. Ultra-thin fluorochemical coatings, however, can provide excellent protection, are thin enough to not necessarily require component masking and do not necessarily require curing. In this work, ultra-thin fluoropolymer coatings were tested by internal and industry approved test methods, such as IEC (ingress protection), IPC (conformal coating qualification), and ASTM (flowers-of-sulfur exposure), to determine whether this level of protection and process ease was possible.

3M Company

Relative Humidity Dependence of Creep Corrosion on Organic-Acid Flux Soldered Printed Circuit Boards

Technical Library | 2018-05-09 22:15:29.0

Creep corrosion on printed circuit boards (PCBs) is the corrosion of copper metallization and the spreading of the copper corrosion products across the PCB surfaces to the extent that they may electrically short circuit neighboring features on the PCB. The iNEMI technical subcommittee on creep corrosion has developed a flowers-of-sulfur (FOS) based test that is sufficiently well developed for consideration as an industry standard qualification test for creep corrosion. This paper will address the important question of how relative humidity affects creep corrosion. A creep corrosion tendency that is inversely proportional to relative humidity may allow data center administrators to eliminate creep corrosion simply by controlling the relative humidity in the data center,thus, avoiding the high cost of gas-phase filtration of gaseous contamination. The creep corrosion relative humidity dependence will be studied using a modified version of the iNEMI FOS test chamber. The design modification allows the achievement of relative humidity as low as 15% in the presence of the chlorine-releasing bleach aqueous solution. The paper will report on the dependence of creep corrosion on humidity in the 15 to 80% relative humidity range by testing ENIG (gold on electroless nickel), ImAg (immersion silver) and OSP (organic surface preservative) finished PCBs, soldered with organic acid flux.

iNEMI (International Electronics Manufacturing Initiative)

WHY CLEAN A NO-CLEAN FLUX

Technical Library | 2020-11-04 17:57:41.0

Residues present on circuit boards can cause leakage currents if not controlled and monitored. How "Clean is Clean" is neither easy nor cheap to determine. Most OEMs use analytical methods to assess the risk of harmful residues. The levels that can be associated with clean or dirty are typically determined based on the exposed environment where the part will be deployed. What is acceptably clean for one segment of the industry may be unacceptable for more demanding segments. As circuit assemblies increase in density, understanding cleanliness data becomes more challenging. The risk of premature failure or improper function is typically site specific. The problem is that most do not know how to measure or define cleanliness nor can they recognize process problems related to residues. A new site specific method has been designed to run performance qualifications on boards built with specific soldering materials, reflow settings and cleaning methods. High impedance measurements are performed on break off coupons designed with components geometries used to build the assembly. The test method provides a gauge of potential contamination sources coming from the assembly process that can contribute to electrochemical migration.

KYZEN Corporation

Cracking Problems in Low-Voltage Chip Ceramic Capacitors

Technical Library | 2022-09-25 20:03:37.0

Cracking remains the major reason of failures in multilayer ceramic capacitors (MLCCs) used in space electronics. Due to a tight quality control of space-grade components, the probability that as manufactured capacitors have cracks is relatively low, and cracking is often occurs during assembly, handling and the following testing of the systems. Majority of capacitors with cracks are revealed during the integration and testing period, but although extremely rarely, defective parts remain undetected and result in failures during the mission. Manual soldering and rework that are often used during low volume production of circuit boards for space aggravate this situation. Although failures of MLCCs are often attributed to the post-manufacturing stresses, in many cases they are due to a combination of certain deviations in the manufacturing processes that result in hidden defects in the parts and excessive stresses during assembly and use. This report gives an overview of design, manufacturing and testing processes of MLCCs focusing on elements related to cracking problems. The existing and new screening and qualification procedures and techniques are briefly described and assessed by their effectiveness in revealing cracks. The capability of different test methods to simulate stresses resulting in cracking, mechanisms of failures in capacitors with cracks, and possible methods of selecting capacitors the most robust to manual soldering stresses are discussed.

NASA Office Of Safety And Mission Assurance

  1 2 Next

qualification searches for Companies, Equipment, Machines, Suppliers & Information

SMT feeders

High Throughput Reflow Oven
Sell Used SMT & Test Equipment

High Precision Fluid Dispensers
Software for SMT

World's Best Reflow Oven Customizable for Unique Applications
Electronic Solutions

Wave Soldering 101 Training Course