Technical Library | 2010-04-29 21:40:37.0
The purpose of this paper is to investigate the effects of reflow time, reflow peak temperature, thermal shock and thermal aging on the intermetallic compound (IMC) thickness for Sn3.0Ag0.5Cu (SAC305) soldered joints.
Technical Library | 2021-04-21 19:28:30.0
Voids affect the thermal characteristics and mechanical properties of a solder joint, thereby affecting the reliability of the solder interconnect. The automotive sector in particular is requiring the mitigation of solder voids in various electronic control modules to the minimum possible level. Earlier research efforts performed to decrease voids involved varying the reflow profile, paste deposit, paste alloy composition, stencil aperture, and thickness.
Technical Library | 2022-10-31 18:35:40.0
Voids affect the thermal characteristics and mechanical properties of a solder joint, thereby affecting the reliability of the solder interconnect. The automotive sector in particular is requiring the mitigation of solder voids in various electronic control modules to the minimum possible level. Earlier research efforts performed to decrease voids involved varying the reflow profile, paste deposit, paste alloy composition, stencil aperture, and thickness. Due to the various advantages they offer, the use of Ball Grid Array packages is common across all industry sectors. They are also prone to process voiding issues. This study was performed to determine if vacuum assisted reflow process can help alleviate the voids in area array solder joints. Test parameters in this study largely focused on vacuum pressure level and vacuum dwell time.
Technical Library | 2019-07-24 23:55:32.0
Voiding is a key concern for components with thermal planes because interruptions in Z-axis continuity of the solder joint will hinder thermal transfer. When assembling components with solder paste, there is a high propensity for voiding due to the confined nature of the solder paste deposits under the component. Once reflowed, many factors contribute to the amount of voiding in a solder joint such as the reflow profile, designs of the component, board and stencil, and material factors. This study will focus on the solder paste alloy and flux combination as well as profile and board surface finishes.
Technical Library | 2013-06-05 23:14:44.0
The combination of higher lead-free process temperatures, smaller print deposits, and temperature restraints on electrical components has created difficult challenges in optimizing the reflow process. Not only are the electronic components and the PWB at risk, but the ability to achieve a robust solder joint becomes difficult, especially if the PCB is thermally massive. In addition, the constant miniaturization of electronic components, hence smaller solder paste deposits, may require the use of smaller particle-sized powders (...) This paper is a summary of best practices in optimizing the reflow process to meet these challenges of higher reflow temperatures, smaller print deposits, decreased powder particle size, and their affect on the reflow process.
Technical Library | 2014-03-20 12:37:39.0
In the beginning of SMT, Vapor Phase Soldering was the preferred reflow soldering technology because of its excellent heat transfer capabilities. There were also some disadvantages like fast temperature rise, nearly no influence on the temperature profiles and high costs. So the use of Vapor Phase Soldering was reduced to special applications with high mass or complex boards in low numbers (e.g. for military or aerospace use).
Technical Library | 2023-06-14 01:09:26.0
In the electronic packaging industry, it is important to be able to make accurate predictions of board level solder joint reliability during thermal cycling exposures. The Anand viscoelastic constitutive model is often used to represent the material behavior of the solder in finite element simulations. This model is defined using nine material parameters, and the reliability prediction results are often highly sensitive to the Anand parameters. In this work, an investigation on the Anand constitutive model and its application to SAC solders of various Ag contents (i.e. SACN05, with N = 1, 2, 3, 4) has been performed. For each alloy, both water quenched (WQ) and reflowed (RF) solidification profiles were utilized to establish two unique specimen microstructures, and the same reflow profile was used for all four of the SAC alloys so that the results could be compared and the effects of Ag content could be studied systematically.
Technical Library | 2020-12-29 20:55:46.0
Voiding in solder joints has been studied extensively, and the effects of many variables compared and contrasted with respect to voiding performance. Solder paste flux, solder powder size, stencil design, circuit board design, via-in-pad design, surface finish, component size, reflow profile, vacuum reflow, nitrogen reflow and other parameters have been varied and voiding quantified for each. The results show some differences in voiding performance with respect to most of these variables but these variables are not independent of each other. Voiding in solder joints is a complex issue that often requires multiple approaches to reduce voiding below required limits. This paper focuses on solutions to voiding for commonly used bottom terminated components (BTCs).
Technical Library | 2019-08-07 22:56:45.0
The requirement to reconsider traditional soldering methods is becoming more relevant as the demand for bottom terminated components (QFN/BTC) increases. Thermal pads under said components are designed to enhance the thermal and electrical performance of the component and ultimately allow the component to run more efficiently. Additionally, low voiding is important in decreasing the current path of the circuit to maximize high speed and RF performances. The demand to develop smaller, more reliable, packages has seen voiding requirements decrease below 15 percent and in some instances, below 10 percent.Earlier work has demonstrated the use of micro-fluxed solder preforms as a mechanism to reduce voiding. The current work builds upon these results to focus on developing an engineered approach to void reduction in leadless components (QFN) through increasing understanding of how processing parameters and a use of custom designed micro-fluxed preforms interact. Leveraging the use of a micro-fluxed solder preform in conjunction with low voiding solder paste, stencil design, and application knowhow are critical factors in determining voiding in QFN packages. The study presented seeks to understand the vectors that can contribute to voiding such as PCB pad finish, reflow profile, reflow atmosphere, via configuration, and ultimately solder design.A collaboration between three companies consisting of solder materials supplier, a power semiconductor supplier, and an electronic assembly manufacturer worked together for an in-depth study into the effectiveness of solder preforms at reducing voiding under some of the most prevalent bottom terminated components packages. The effects of factors such as thermal pad size, finish on PCB, preform types, stencil design, reflow profile and atmosphere, have been evaluated using lead-free SAC305 low voiding solder paste and micro-fluxed preforms. Design and manufacturing rules developed from this work will be discussed.
Technical Library | 2024-07-24 01:04:35.0
Quad Flat No Leads (QFN) package designs receive more and more attention in electronic industry recently. This package offers a number of benefits including (1) small size, such as a near die size footprint, thin profile, and light weight; (2) easy PCB trace routing due to the use of perimeter I/O pads; (3) reduced lead inductance; and (4) good thermal and electrical performance due to the adoption of exposed copper die-pad technology. These features make the QFN an ideal choice for many new applications where size, weight, electrical, and thermal properties are important. However, adoption of QFN often runs into voiding issue at SMT assembly. Upon reflow, outgassing of solder paste flux at the large thermal pad has difficulty escaping and inevitably results in voiding. It is well known that the presence of voids will affect the mechanical properties of joints and deteriorate the strength, ductility, creep, and fatigue life. In addition, voids could also produce spot overheating, lessening the reliability of the joints.