Technical Library: reflow warpage (Page 1 of 2)

Key Advances in Void Reduction in the Reflow Process Using Multi-Stage Controlled Vacuum

Technical Library | 2020-01-28 00:23:58.0

This paper explores new advances in the reflow soldering process including vacuum technology and warpage mitigation systems. The first topic for discussion will be the implementation of a vacuum process directly in a conventional inline soldering system. The second topic presented is the mitigation of warpage on substrates or wafers.

Heller Industries Inc.

Sn-3.0Ag-0.5Cu/Sn-58Bi composite solder joint assembled using a low-temperature reflow process for PoP technology

Technical Library | 2021-01-13 21:34:29.0

Package-on-Package (PoP) is a popular technology for fabricating chipsets of accelerated processing units. However, the coefficient of thermal expansion mismatch between Si chips and polymer substrates induces thermal warpage during the reflow process. As such, the reflow temperature and reliability of solder joints are critical aspects of PoP. Although Sne58Bi is a good candidate for low-temperature processes, its brittleness causes other reliability issues. In this study, an in-situ observation was performed on composite solders (CSs) made of ...

Osaka University

Effects of Package Warpage on Head-in-Pillow Defect

Technical Library | 2017-07-06 15:50:17.0

Head-in-pillow (HiP) is a BGA defect which happens when solder balls and paste can't contact well during reflow soldering. Package warpage was one of the major reasons for HiP formation. In this paper, package warpage was measured and simulated. It was found that the package warpage was sensitive to the thickness of inside chips. A FEM method considering viscoelastic property of mold compound was introduced to simulate package warpage. The CTE mismatch was found contributes to more than 90% of the package warpage value when reflowing at the peak temperature. A method was introduced to measure the warpage threshold, which is the smallest warpage value that may lead to HiP. The results in different atmospheres showed that the warpage threshold was 50μm larger in N2 than that in air, suggesting that under N2 atmosphere the process window for HiP defects was larger than that under air, which agreed with the experiments.

Samsung Electronics

Hidden Head-In-Pillow soldering failures

Technical Library | 2022-12-23 20:44:54.0

One of the upcoming reliability issues which is related to the lead-free solder introduction, are the headin-pillow solderability problems, mainly for BGA packages. These problems are due to excessive package warpage at reflow temperature. Both convex and concave warpage at reflow temperature can lead to the head-in-pillow problem where the solder paste and solder ball are in mechanical contact but not forming one uniform joint. With the thermo-Moiré profile measurements, this paper explains for two flex BGA packages the head-in-pillow. Both local and global height differences higher than 100 µm have been measured at solder reflow temperature. This can be sufficient to have no contact between the molten solder ball and solder paste. Finally, the impact of package drying is measured

IMEC

Implementing Warpage Management: A Five-Step Process for EMS Providers

Technical Library | 2014-08-19 16:07:15.0

Warpage management consists of planning, measuring, analyzing, sharing, and reacting to data related to the surface shapes of electronics components as they change throughout the reflow assembly process. Leading semiconductor manufacturers have had warpage management systems in place for ten years or more, mainly because microchip package warpage must be understood and compensated for in order to attain high assembly yields. Similarly, newer device architectures such as package-on-package and system-on-a-chip are sensitive to warpage-related assembly issues, and companies involved in the manufacture and assembly of these devices tend to have the most advanced warpage management programs.

Akrometrix

A PROCEDURE TO DETERMINE HEAD-IN-PILLOW DEFECT AND ANALYSIS OF CONTRIBUTING FACTORS

Technical Library | 2020-07-02 01:14:44.0

Head-in-Pillow (HIP) defects are a growing concern in the electronics industry. These defects are usually believed to be the result of several factors, individually or in combination. Some of the major contributing factors include: surface quality of the BGA spheres, activity of the paste flux, improper placement / misalignment of the components, a non-optimal reflow profile, and warpage of the components. To understand the role of each of these factors in producing head-in-pillow defects and to find ways to mitigate them, we have developed two in-house tests.

Cookson Electronics

Ready to Start Measuring PCB Warpage during Reflow? Why and How to Use the New IPC-9641 Standard

Technical Library | 2014-08-19 15:39:13.0

Understanding warpage of package attach locations on PCBs under reflow temperature conditions is critical in surface mount technology. A new industry standard, IPC 9641, addresses this topic directly for the first time as an international standard.This paper begins by summarizing the sections of the IPC 9641 standard, including, measurement equipment selection, test setup and methodology, and accuracy verification. The paper goes further to discuss practical implementation of the IPC 9641 standards. Key advantages and disadvantages between available warpage measurement methods are highlighted. Choosing the correct measurement technique depends on requirements for warpage resolution, data density, measurement volume, and data correlation. From industry experience, best practice recommendations are made on warpage management of PCB land areas, covering how to setup, run, analyze, and report on local area PCB warpage.The release of IPC 9641 shows that flatness over temperature of the package land area on the PCB is critical to the SMT industry. Furthermore, compatibility of shapes between attaching surfaces in SMT, like a package and PCB, will be critical to product yield and quality in years to come.

Akrometrix

Effects of Temperature Uniformity on Package Warpage

Technical Library | 2019-10-03 14:27:01.0

Knowing how package warpage changes over temperature is a critical variable in order to assemble reliable surface mount attached technology. Component and component or component and board surfaces must stay relatively flat with one another or surface mount defects, such as head-in-pillow, open joints, bridged joints, stretched joints, etc. may occur. Initial package flatness can be affected by numerous aspects of the component manufacturing and design. However, change in shape over temperature is primarily driven by CTE mismatch between the different materials in the package. Thus material CTE is a critical factor in package design. When analyzing or modeling package warpage, one may assume that the package receives heat evenly on all sides, when in production this may not be the case. Thus, in order to understand how temperature uniformity can affect the warpage of a package, a case study of package warpage versus different heating spreads is performed.Packages used in the case study have larger form factors, so that the effect of non-uniformity can be more readily quantified within each package. Small and thin packages are less prone to issues with package temperature variation, due to the ability for the heat to conduct through the package material and make up for uneven sources of heat. Multiple packages and multiple package form factors are measured for warpage via a shadow moiré technique while being heated and cooled through reflow profiles matching real world production conditions. Heating of the package is adjusted to compare an evenly heated package to one that is heated unevenly and has poor temperature uniformity between package surfaces. The warpage is measured dynamically as the package is heated and cooled. Conclusions are drawn as to how the role of uneven temperature spread affects the package warpage.

Akrometrix

A Study On Process, Strength And Microstructure Analysis Of Low Temperature SnBi Containing Solder Pastes Mixed With Lead-Free Solder Balls

Technical Library | 2021-08-25 16:34:37.0

As the traditional eutectic SnPb solder alloy has been outlawed, the electronic industry has almost completely transitioned to the lead-free solder alloys. The conventional SAC305 solder alloy used in lead-free electronic assembly has a high melting and processing temperature with a typical peak reflow temperature of 245ºC which is almost 30ºC higher than traditional eutectic SnPb reflow profile. Some of the drawbacks of this high melting and processing temperatures are yield loss due to component warpage which has an impact on solder joint formation like bridging, open defects, head on pillow.

Rochester Institute of Technology

Investigation and Development of Tin-Lead and Lead-Free Solder Pastes to Reduce the Head-In-Pillow Component Soldering Defect.

Technical Library | 2014-03-06 19:04:07.0

Over the last few years, there has been an increase in the rate of Head-in-Pillow component soldering defects which interrupts the merger of the BGA/CSP component solder spheres with the molten solder paste during reflow. The issue has occurred across a broad segment of industries including consumer, telecom and military. There are many reasons for this issue such as warpage issues of the component or board, ball co-planarity issues for BGA/CSP components and non-wetting of the component based on contamination or excessive oxidation of the component coating. The issue has been found to occur not only on lead-free soldered assemblies where the increased soldering temperatures may give rise to increase component/board warpage but also on tin-lead soldered assemblies.

Christopher Associates Inc.

  1 2 Next

reflow warpage searches for Companies, Equipment, Machines, Suppliers & Information