Technical Library | 2011-01-06 18:03:18.0
The oven recipe, which consists of the reflow oven zone temperature settings and the speed of the conveyor, will determine a specific time‐temperature profile for a given PCB assembly. In order to achieve a good quality PCB assembly, the time‐temperature
Technical Library | 2011-08-04 19:29:53.0
This work covers two major projects aimed at increasing quality and efficiency on a high mix, low volume surface mount electronics production line. Specifically the installation of a ten zone reflow oven and an enhanced changeover method for SMT pick and
Technical Library | 2016-08-18 15:38:09.0
The Selective Reflow Rework Process is an approach to improving the high volume rework process, increasing process capabilities and process repeatability by using a standard reflow oven of 12 zones, pick and place machinery, semi-automated printing gear and Solder Paste Inspection (SPI) implementations. This approach was able to reduce the amount of rework equipment by more than half. Our human resource requirements (indirect and direct labor) were cut by more than 50% and our rolled throughput yield increased from 68.9% to 84.14%. The Selective Reflow Rework Process is less reliant upon operators and has become a repeatable, stable rework process.
Technical Library | 2009-12-23 16:55:08.0
Leading up to the development of lead-free soldering alloys, Horizontal Convection* was developed for the reflow process. Getting the correct temperature profile, with the narrow process window in lead-free applications, is now more important than ever. In each chamber or zone, air is circulated toward one side of the oven above the PCB and toward the opposite side of the oven below the PCB, forming a cyclone around the board. The forced air circulation results in a uniform temperature profile along the entire circuit board assembly. This technology is ideal for the precise profiles needed for lead free soldering.
Technical Library | 2019-07-02 23:02:05.0
The introduction of lead-free solders resulted in a selection of different chemistries for solder pastes. The higher melting points of lead-free alloys required thermal heat resistant rosin systems and activators that are active at elevated temperatures. As a result, more frequent maintenance of the filtration systems is required and machine downtime is increased.Last year a different method of cleaning reflow ovens was introduced. Instead of cooling down the process gasses to condensate the residues, a catalyst was used to maintain the clean oven. Catalytic thermal oxidation of residues in the nitrogen atmosphere resulted in cleaner heating zones. The residues were transformed into carbon dioxide. This remaining small amount of char was collected in the catalyst. In air ovens the catalyst was not seen as a beneficial option because the air extracted out of the oven was immediately exhausted into the environment. When a catalyst is used in an air environment there is not only the carbon dioxide residues, but also water. When a catalyst is used in an air reflow oven the question is where the water is going to. Will it condensate in the process part of the oven or is the gas temperature high enough to keep it out of the process area? A major benefit of using a catalyst to clean the air before it is exhausted into the environment is that the air pollution is reduced dramatically. This will make environmental engineers happy and result in less pollution of our nature. Apart from this, the exhaust tubes remain clean which reduces the maintenance of air ovens.This paper will give more detailed information of catalyst systems during development and performance in production lines.
1 |