Technical Library: rfid (Page 1 of 1)

Implementation challenges for PCB tracking using RFID

Technical Library | 2010-08-26 20:43:08.0

Radio frequency identification (RFID) ICs are a popular alternative to barcodes for PCB tracking applications. This article outlines some of the challenges that may be encountered when implementing an RFID system

Murata Manufacturing Co., Ltd.

Printed Circuit Board Tracking with RFID: Speed, Efficiency and Productivity Made Simple.

Technical Library | 2008-05-07 17:54:58.0

Tracking goods through manufacturing was originally accomplished with pencil, paper and human input. Barcodes introduced an automated, machine-readable tracking mechanism that streamlined all types of manufacturing. But modern printed circuit board (PCB) assemblies are running into limitations because of barcode labels. And though barcodes and RFID tags will co-exist, the relatively large barcode labels have to find increasingly scarce real estate on high density boards.

Texas Instruments

Metal-based Inkjet Inks for Printed Electronics

Technical Library | 2014-12-04 18:27:40.0

A review on applications of metal-based inkjet inks for printed electronics with a particular focus on inks containing metal nanoparticles, complexes and metallo-organic compounds. The review describes the preparation of such inks and obtaining conductive patterns by using various sintering methods: thermal, photonic, microwave, plasma, electrical, and chemically triggered. Various applications of metal-based inkjet inks (metallization of solar cell, RFID antennas, OLEDs, thin film transistors, electroluminescence devices) are reviewed.

Hebrew University of Jerusalem

Today's Smaller Cables Require Automated Processing

Technical Library | 2016-06-21 09:15:31.0

The trends in mobile electronics today are smaller, thinner and lighter. Yet, mobile devices are more powerful than ever. Applications, like wireless internet connections, RFID and Bluetooth, that have become essential in today’s devices, require more complex transmission mechanisms. As a result, manufacturers find themselves faced with the challenge of working with ultra-miniature RF cable assemblies.

Schleuniger, Inc.

Surface Treatment Enabling Low Temperature Soldering to Aluminum

Technical Library | 2020-07-29 19:58:48.0

The majority of flexible circuits are made by patterning copper metal that is laminated to a flexible substrate, which is usually polyimide film of varying thickness. An increasingly popular method to meet the need for lower cost circuitry is the use of aluminum on Polyester (Al-PET) substrates. This material is gaining popularity and has found wide use in RFID tags, low cost LED lighting and other single-layer circuits. However, both aluminum and PET have their own constraints and require special processing to make finished circuits. Aluminum is not easy to solder components to at low temperatures and PET cannot withstand high temperatures. Soldering to these materials requires either an additional surface treatment or the use of conductive epoxy to attach components. Surface treatment of aluminum includes the likes of Electroless Nickel Immersion Gold plating (ENIG), which is extensive wet-chemistry and cost-prohibitive for mass adoption. Conductive adhesives, including Anisotropic Conductive Paste (ACP), are another alternate to soldering components. These result in component substrate interfaces that are inferior to conventional solders in terms of performance and reliability. An advanced surface treatment technology will be presented that addresses all these constraints. Once applied on Aluminum surfaces using conventional printing techniques such as screen, stencil, etc., it is cured thermally in a convection oven at low temperatures. This surface treatment is non-conductive. To attach a component, a solder bump on the component or solder printed on the treated pad is needed before placing the component. The Aluminum circuit will pass through a reflow oven, as is commonly done in PCB manufacturing. This allows for the formation of a true metal to metal bond between the solder and the aluminum on the pads. This process paves the way for large scale, low cost manufacturing of Al-PET circuits. We will also discuss details of the process used to make functional aluminum circuits, study the resultant solder-aluminum bond, shear results and SEM/ EDS analysis.

Averatek Corporation

  1  

rfid searches for Companies, Equipment, Machines, Suppliers & Information

pressure curing ovens

High Throughput Reflow Oven
See Your 2024 IPC Certification Training Schedule for Eptac

World's Best Reflow Oven Customizable for Unique Applications
SMT feeders

Component Placement 101 Training Course
PCB Handling Machine with CE

Reflow Soldering 101 Training Course
Electronic Solutions R3

Thermal Transfer Materials.