Technical Library: rogers pcb voiding (Page 1 of 1)

Micro-Sectioning of PCBs for Failure Analysis

Technical Library | 2010-01-13 12:34:10.0

Micro-sectioning (sometimes referred to as cross-sectioning)is a technique, used to characterize materials or to perform a failure mode analysis, for exposing an internal section of a PCB or package. Destructive in nature, cross-sectioning requires encapsulation of the specimen in order to provide support, stability, and protection. Failures that can be investigated through micro-sectional analysis include component defects, thermo-mechanical failures, processing failures related to solder reflow, opens or shorts, voiding and raw material evaluations.

BEST Inc.

Void Reduction in Reflow Soldering Processes by Sweep Stimulation of PCB Substrate

Technical Library | 2017-11-08 23:22:04.0

Due to the ongoing trend towards miniaturization of power components, the need for increased thermal conductivity of solder joints in SMT processes gains more and more importance. Therefore, the role of void free solder joints in power electronics becomes more central. Voids developed during soldering reduce the actual thermal transfer and can cause thermal damage of the power components up to their failure. For this reason, the company has developed a new technique to minimize the formation of these voids during the soldering process.

kurtz ersa Corporation

Use of Non Etching Adhesion Promoters in Advanced PCB Applications

Technical Library | 2011-06-16 18:59:43.0

Based on tests carried out with commercially available chemistry, this paper discusses the advantages available through the use of NEAP processes for inner layer bonding and soldermask pretreatment. The process is characterized with a view to high volume

Atotech

Novel Approach to Void Reduction Using Microflux Coated Solder Preforms for QFN/BTC Packages that Generate Heat

Technical Library | 2019-08-07 22:56:45.0

The requirement to reconsider traditional soldering methods is becoming more relevant as the demand for bottom terminated components (QFN/BTC) increases. Thermal pads under said components are designed to enhance the thermal and electrical performance of the component and ultimately allow the component to run more efficiently. Additionally, low voiding is important in decreasing the current path of the circuit to maximize high speed and RF performances. The demand to develop smaller, more reliable, packages has seen voiding requirements decrease below 15 percent and in some instances, below 10 percent.Earlier work has demonstrated the use of micro-fluxed solder preforms as a mechanism to reduce voiding. The current work builds upon these results to focus on developing an engineered approach to void reduction in leadless components (QFN) through increasing understanding of how processing parameters and a use of custom designed micro-fluxed preforms interact. Leveraging the use of a micro-fluxed solder preform in conjunction with low voiding solder paste, stencil design, and application knowhow are critical factors in determining voiding in QFN packages. The study presented seeks to understand the vectors that can contribute to voiding such as PCB pad finish, reflow profile, reflow atmosphere, via configuration, and ultimately solder design.A collaboration between three companies consisting of solder materials supplier, a power semiconductor supplier, and an electronic assembly manufacturer worked together for an in-depth study into the effectiveness of solder preforms at reducing voiding under some of the most prevalent bottom terminated components packages. The effects of factors such as thermal pad size, finish on PCB, preform types, stencil design, reflow profile and atmosphere, have been evaluated using lead-free SAC305 low voiding solder paste and micro-fluxed preforms. Design and manufacturing rules developed from this work will be discussed.

Alpha Assembly Solutions

Assessing the Effectiveness of I/O Stencil Aperture Modifications on BTC Void Reduction

Technical Library | 2018-09-26 20:33:26.0

Bottom terminated components, or BTCs, have been rapidly incorporated into PCB designs because of their low cost, small footprint and overall reliability. The combination of leadless terminations with underside ground/thermal pads have presented a multitude of challenges to PCB assemblers, including tilting, poor solder fillet formation, difficult inspection and – most notably – center pad voiding. Voids in large SMT solder joints can be difficult to predict and control due to the variety of input variables that can influence their formation. Solder paste chemistries, PCB final finishes, and reflow profiles and atmospheres have all been scrutinized, and their effects well documented. Additionally, many of the published center pad voiding studies have focused on optimizing center pad footprint and stencil aperture designs. This study focuses on I/O pad stencil modifications rather than center pad modifications. It shows a no-cost, easily implemented I/O design guideline that can be deployed to consistently and repeatedly reduce void formation on BTC-style packages.

AIM Solder

Voiding Control for QFN Assembly

Technical Library | 2011-04-07 14:50:29.0

Quad Flat No Leads (QFN) package designs receive more and more attention in electronic industry nowadays. This package offers a number of benefits including (1) small size, such as a near die-sized footprint, thin profile, and light weight; (2) easy PCB t

Indium Corporation

Pad Design and Process for Voiding Control at QFN Assembly

Technical Library | 2024-07-24 01:04:35.0

Quad Flat No Leads (QFN) package designs receive more and more attention in electronic industry recently. This package offers a number of benefits including (1) small size, such as a near die size footprint, thin profile, and light weight; (2) easy PCB trace routing due to the use of perimeter I/O pads; (3) reduced lead inductance; and (4) good thermal and electrical performance due to the adoption of exposed copper die-pad technology. These features make the QFN an ideal choice for many new applications where size, weight, electrical, and thermal properties are important. However, adoption of QFN often runs into voiding issue at SMT assembly. Upon reflow, outgassing of solder paste flux at the large thermal pad has difficulty escaping and inevitably results in voiding. It is well known that the presence of voids will affect the mechanical properties of joints and deteriorate the strength, ductility, creep, and fatigue life. In addition, voids could also produce spot overheating, lessening the reliability of the joints.

Indium Corporation

Measuring Conformal Coating Thickness

Technical Library | 2015-07-21 13:50:37.0

Achieving an even coat at the right desired thickness is a major challenge when it comes to applying conformal coating to a Printed Circuit Board (PCB). Applying a coating too thin will ultimately render the electronic assembly vulnerable to potential environmental risks therefore defeating the purpose of the coating. Apply the coat too thick, and it could leave the electronic specific components non-functional therefore destroying the electronic assembly entirely. Coating thickness must meet quality specifications. Measurements for coating thickness may be taken while film is dry or wet. Once measurements are recorded, thickness is compared to quality specifications and fluid dispensing automation machinery is calibrated as necessary. There are a handful of methods for measuring conformal coating thickness that are commonly used in the Electronic Manufacturing Services (EMS) and Original Electronic Manufacturer (OEM) industries. A few commonly used methods for checking conformal coating thickness include:

ETS - Energy Technology Systems, Inc.

THE IMPACT OF VIA AND PAD DESIGN ON QFN ASSEMBLY

Technical Library | 2024-07-24 01:18:03.0

Quad Flat No-Lead (QFN) packages has become very popular in the industry and are widely used in many products. These packages have different size and pin counts, but they have a common feature: thermal pad at the bottom of device. The thermal pad of the leadless QFN provides efficient heat dissipation from the component to PCB. In many cases, arrays of the thermal via under the component is used to dissipate heat from the device. However, thermal vias can create more voids or result in solder protrusion onto the secondary side.

Flex (Flextronics International)

Developments in Electroless Copper Processes to Improve Performance in amSAP Mobile Applications

Technical Library | 2020-09-02 22:02:13.0

With the adoption of Wafer Level Packages (WLP) in the latest generation mobile handsets, the Printed Circuit Board (PCB) industry has also seen the initial steps of High Density Interconnect (HDI) products migrating away from the current subtractive processes towards a more technically adept technique, based on an advanced modified Semi Additive Process (amSAP). This pattern plate process enables line and space features in the region of 20um to be produced, in combination with fully filled, laser formed microvias. However, in order to achieve these process demands, a step change in the performance of the chemical processes used for metallization of the microvia is essential. In the electroless Copper process, the critical activator step often risks cross contamination by the preceding chemistries. Such events can lead to uncontrolled buildup of Palladium rich residues on the panel surface, which can subsequently inhibit etching and lead to short circuits between the final traces. In addition, with more demands being placed on the microvia, the need for a high uniformity Copper layer has become paramount, unfortunately, as microvia shape is often far from ideal, the deposition or "throw" characteristics of the Copper bath itself are also of critical importance. This "high throwing power" is influential elsewhere in the amSAP technique, as it leads to a thinner surface Copper layer, which aids the etching process and enables the ultra-fine features being demanded by today's high end PCB applications. This paper discusses the performance of an electroless Copper plating process that has been developed to satisfy the needs of challenging amSAP applications. Through the use of a radical predip chemistry, the formation, build up and deposition of uncontrolled Pd residues arising from activator contamination has been virtually eradicated. With the adoption of a high throwing power Copper bath, sub 30um features are enabled and microvia coverage is shown to be greatly improved, even in complex via shapes which would otherwise suffer from uneven coverage and risk premature failure in service. Through a mixture of development and production data, this paper aims to highlight the benefits and robust performance of the new electroless Copper process for amSAP applications

Atotech

  1  

rogers pcb voiding searches for Companies, Equipment, Machines, Suppliers & Information

Precision PCB Services, Inc
Precision PCB Services, Inc

Products, services, training & consulting for the assembly, rework & repair of electronic assemblies. BGA process experts. Manufacturers Rep, Distributor & Service Provider for Seamark/Zhuomao and Shuttle Star BGA Rework Stations.

Training Provider / Manufacturer's Representative / Equipment Dealer / Broker / Auctions / Consultant / Service Provider

1750 Mitchell Ave.
Oroville, CA USA

Phone: (888) 406-2830