Technical Library: score (Page 1 of 1)

UV Laser PCB Depaneling Machine Improve Cutting Effect

Technical Library | 2021-09-02 08:17:07.0

We are a professional manufacturer of PCB depaneling machines, which is workable for all boards, including flex and regid boards, v-scored boards and routed boards. Laser pcb depaneling is non-contact way without mechanical stress,this solution is good for modern precision PCB depaneling. It has below advantages: 1. No dust The production environment of the circuit board industry is carried out in the dust-free workshop. The traditional pcb depaneling equipment, such as blade moving type machine, will inevitably produce residues and micro powder, which will pollute the 10000 and 1000 class dust-free workshops and affect the conductivity of products. The UV laser PCB cutting machine is a vaporization processing process, which will not produce dust and is conducive to the conductivity of the product. 2. High cutting precision The processing gap of high-precision traditional processing equipment can not reach the gap width of less than 100 microns, which will cause certain damage to the lines on the edge or PCBA circuit board containing components. The focus spot of the laser cutting machine is small, and the ultraviolet cold processing mode has little thermal impact on the edge of the circuit board. The cutting position accuracy is less than 50 microns, and the cutting size accuracy is less than 30 microns, which will not affect the edge of the circuit board, and the precision is high. 3. No stress Traditional processing methods generally have V-grooves, which will cause certain damage to the board in the manufacturing process. The UV laser PCB cutting machine can directly cut the bare board without making V-grooves. In addition, the traditional processing methods directly use tools to act on the circuit board, especially the stamping method has a great impact on the circuit board, which is easy to cause board deformation. The laser cutting machine is a non-contact processing mode, which acts on the surface of the material through the high-energy beam, which will not cause the influence of stress and the deformation and damage of the circuit board. 4. For special-shaped cutting, it is easy to automate The UV laser PCB cutting machine can cut for any shape without replacing any props and fixtures, and without steel mesh. The same equipment can meet special-shaped and straight-line cutting, which is easy to realize assembly line automatic production and high flexibility. It is easy to improve production efficiency and save production process and production cycle. In particular, it can quickly and efficiently meet the needs of rapid proofing, directly import the drawing, and then locate the cutting. 5. High compatibility The UV laser PCB cutting machine can process the materials around the circuit board, such as PCB, FPC, covering film, pet, reinforcing board, IC, ultra-thin metal cutting, etc. it has strong practicability, is compatible with the processing of a variety of materials, is easy to operate, can be imported into the drawing, does not need to adjust any mechanical parts, and is easy to operate and maintain. 6. Good cutting edge effect The cutting edge is smooth and neat without burr. It can be processed and formed directly according to the size of the drawing, which is conducive to improving the yield of the product. It can be directly installed into the subsequent process without further processing. For more details about UV laser depaneling, please feel free to contact us. www.pcbdepanelingrouter.com

Winsmart Electronic Co.,Ltd

Industry 4.0: Mining Physical Defects in Production of Surface-Mount Devices

Technical Library | 2021-12-02 01:44:00.0

With the advent of Industry 4.0, production processes have been endowed with intelligent cyber-physical systems generating massive amounts of streaming sensor data. Internet of Things technologies have enabled capturing, managing, and processing production data at a large scale in order to utilize this data as an asset for the optimization of production processes. In this work, we focus on the automatic detection of physical defects in the production of surfacemount devices. We show how to build a classification model based on random forests that efficiently detects defect products with a high degree of precision. In fact, the results of our preliminary experimental analysis indicate that our approach is able to correctly determine defects in a simulated production environment of surface-mount devices with a MCC score of 0.96. We investigate the feasibility of utilizing this approach in realistic settings. We believe that our approach will help to advance the production of surface-mount devices.

Fraunhofer Institute for Applied Information Technology

Automated Optical Inspection Method for Light-Emitting Diode Defect Detection Using Unsupervised Generative Adversarial Neural Network

Technical Library | 2021-11-22 20:44:44.0

Many automated optical inspection (AOI) companies use supervised object detection networks to inspect items, a technique which expends tremendous time and energy to mark defectives. Therefore, we propose an AOI system which uses an unsupervised learning network as the base algorithm to simultaneously generate anomaly alerts and reduce labeling costs. This AOI system works by deploying the GANomaly neural network and the supervised network to the manufacturing system. To improve the ability to distinguish anomaly items from normal items in industry and enhance the overall performance of the manufacturing process, the system uses the structural similarity index (SSIM) as part of the loss function as well as the scoring parameters. Thus, the proposed system will achieve the requirements of smart factories in the future (Industry 4.0).

Shenzhen University

To Quantify a Wetting Balance Curve

Technical Library | 2017-10-19 01:17:56.0

Wetting balance testing has been an industry standard for evaluating the solderability of surface finishes on printed circuit boards (PCB) for many years. A Wetting Balance Curve showing Force as a function of Time, along with the individual data outputs "Time to Zero" T(0), "Time to Two-Thirds Maximum Force" T(2/3), and "Maximum Force" F(max) are usually used to evaluate the solderability performance of various surface finishes. While a visual interpretation of the full curve is a quick way to compare various test results, this method is subjective and does not lend itself readily to a rigorous statistical evaluation. Therefore, very often, when a statistical evaluation is desired for comparing the solderability between different surface finishes or different test conditions, one of the individual parameters is chosen for convenience. However, focusing on a single output usually doesn't provide a complete picture of the solderability of the surface finish being evaluated.In this paper, various models here-in labeled as "point" and "area" models are generated using the three most commonly evaluated individual outputs T(0), T(2/3), and F(max). These models have been studied to quantify how well each describes the full wetting balance curve. The solderability score (S-Score) with ranking from 0 to 10 were given to quantify the wetting balance curve as the result of the model study, which corresponds well with experimental results.

Enthone

  1  

score searches for Companies, Equipment, Machines, Suppliers & Information

used smt parts china

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
Blackfox IPC Training & Certification

Component Placement 101 Training Course
2024 Eptac IPC Certification Training Schedule

High Throughput Reflow Oven
SMT Machines

World's Best Reflow Oven Customizable for Unique Applications


500+ original new CF081CR CN081CR FEEDER in stock