Technical Library: screen and print (Page 11 of 12)

Influence of Copper Conductor Surface Treatment for High Frequency PCB on Electrical Properties and Reliability

Technical Library | 2019-02-13 13:45:11.0

Development of information and telecommunications network is outstanding in recent years, and it is required for the related equipment such as communication base stations, servers and routers, to process huge amount of data in no time. As an electrical signal becomes faster and faster, how to prevent signal delay by transmission loss is a big issue for Printed Circuit Boards (PCB) loaded on such equipments. There are two main factors as the cause of transmission loss; dielectric loss and conductor loss. To decrease the dielectric loss, materials having low dielectric constant and low loss tangent have been developed. On the other hand, reducing the surface roughness of the copper foil itself to be used or minimizing the surface roughness by modifying surface treatment process of the conductor patterns before lamination is considered to be effective in order to decrease the conductor loss. However, there is a possibility that reduction in the surface roughness of the conductor patterns will lead to the decrease in adhesion of conductor patterns to dielectric resin and result in the deterioration of reliability of PCB itself. In this paper, we will show the evaluation results of adhesion performance and electrical properties using certain type of dielectric material for high frequency PCB, several types of copper foil and several surface treatment processes of the conductor patterns. Moreover, we will indicate a technique from the aspect of surface treatment process in order to ensure reliability and, at the same time, to prevent signal delay at the signal frequency over 20 GHz.

MEC Company Ltd.

Solutions for Selective Soldering of High Thermal Mass and Fine-Pitch Components

Technical Library | 2020-05-07 03:46:27.0

The selective soldering process has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty, however some types of challenging components require additional attention to ensure optimum quality control is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures and/or pallets often places an additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors,can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues due to their beryllium copper termination pins.

SELECT Products | Nordson Electronics Solutions

Whisker Growth In Tin Alloys On Glass-Epoxy Laminate Studied By Scanning ION Microscopy and Energy-Dispersive X-Ray Spectroscopy

Technical Library | 2013-08-22 14:28:58.0

Tin-rich solders are widely applied in the electronic industry in the majority of modern printed circuit boards (PCBs). Because the use of lead-tin solders has been banned in the European Union since 2006, the problem of the bridging of adjacent conductors due to tin whisker growth (limited before by the addition of Pb) has been reborn. In this study tin alloys soldered on glass-epoxy laminate (typically used for PCBs) are considered. Scanning ion microscopy with Focused Ion Beam (FIB) system and energy-dispersive X-ray spectroscopy (EDXS) were used to determine correlations between spatial non-uniformities of the glass-epoxy laminate, the distribution of intermetallic compounds and whisker growth.

The Institute of Electron Technology (ITE)

The Compensation Problem and Solution Using Design of Experiments for Dense Multilayer Printed Circuit Boards

Technical Library | 2023-07-16 21:56:12.0

Imagine being able to accurately predict the correct artwork compensations prior to taking on a large quick turn order regardless of the board design, materials, or process. Such predictive power is possible and can be achieved without a lot of cost and complexity. This paper shows how small sets of designed experiments can be used to create a cImagine being able to accurately predict the correct artwork compensations prior to taking on a large quick turn order regardless of the board design, materials, or process. Such predictive power is possible and can be achieved without a lot of cost and complexity. This paper shows how small sets of designed experiments can be used to create a compensation model. Before a discussion of the design of experiments (DOEs), we will examine key processes and material variables that affect movement as demonstrated on real board design layout in a real production process. Only the few most relevant variables need to be included in the experimental design. A solution is presented that uses small experiments that provide the required information for constructing a general compensation model.mpensation model. Before a discussion of the design of experiments (DOEs), we will examine key processes and material variables that affect movement as demonstrated on real board design layout in a real production process. Only the few most relevant variables need to be included in the experimental design. A solution is presented that uses small experiments that provide the required information for constructing a general compensation model.

Isola Group

Effects of PCB Substrate Surface Finish and Flux on Solderability of Lead-Free SAC305 Alloy

Technical Library | 2021-10-20 18:21:06.0

The solderability of the SAC305 alloy in contact with printed circuit boards (PCB) having different surface finishes was examined using the wetting balance method. The study was performed at a temperature of 260 _C on three types of PCBs covered with (1) hot air solder leveling (HASL LF), (2) electroless nickel immersion gold (ENIG), and (3) organic surface protectant (OSP), organic finish, all on Cu substrates and two types of fluxes (EF2202 and RF800). The results showed that the PCB substrate surface finish has a strong effect on the value of both the wetting time t0 and the contact angle h. The shortest wetting time was noted for the OSP finish (t0 = 0.6 s with EF2202 flux and t0 = 0.98 s with RF800 flux), while the ENIG finish showed the longest wetting time (t0 = 1.36 s with EF2202 flux and t0 = 1.55 s with RF800 flux). The h values calculated from the wetting balance tests were as follows: the lowest h of 45_ was formed on HASL LF (EF2202 flux), the highest h of 63_ was noted on the OSP finish, while on the ENIG finish, it was 58_ (EF2202 flux). After the solderability tests, the interface characterization of cross-sectional samples was performed by means of scanning electron microscopy coupled with energy dispersive spectroscopy.

Foundry Research Institute

Comparison of ROSE, C3/IC, and SIR as an effective cleanliness verification test for post soldered PCBA

Technical Library | 2023-04-17 21:17:59.0

The purpose of this paper is to evaluate and compare the effectiveness and sensitivity of different cleanliness verification tests for post soldered printed circuit board assemblies (PCBAs) to provide an understanding of current industry practice for ionic contamination detection limits. Design/methodology/approach – PCBAs were subjected to different flux residue cleaning dwell times and cleanliness levels were verified with resistivity of solvent extract, critical cleanliness control (C3) test, and ion chromatography analyses to provide results capable of differentiating different sensitivity levels for each test. Findings – This study provides an understanding of current industry practice for ionic contamination detection using verification tests with different detection sensitivity levels. Some of the available cleanliness monitoring systems, particularly at critical areas of circuitry that are prone to product failure and residue entrapment, may have been overlooked. Research limitations/implications – Only Sn/Pb, clean type flux residue was evaluated. Thus, the current study was not an all encompassing project that is representative of other chemistry-based flux residues. Practical implications – The paper provides a reference that can be used to determine the most suitable and effective verification test for the detection of ionic contamination on PCBAs. Originality/value – Flux residue-related problems have long existed in the industry. The findings presented in this paper give a basic understanding to PCBA manufacturers when they are trying to choose the most suitable and effective verification test for the detection of ionic contamination on their products. Hence, the negative impact of flux residue on the respective product's long-term reliability and performance can be minimized and monitored effectively.

Jabil Circuit, Inc.

Innovative Electroplating Processes for IC Substrates - Via Fill, Through Hole Fill, and Embedded Trench Fill

Technical Library | 2021-06-21 19:34:02.0

In this era of electronics miniaturization, high yield and low-cost integrated circuit (IC) substrates play a crucial role by providing a reliable method of high density interconnection of chip to board. In order to maximize substrate real-estate, the distance between Cu traces also known as line and space (L/S) should be minimized. Typical PCB technology consists of L/S larger than 40 µ whereas more advanced wafer level technology currently sits at or around 2 µm L/S. In the past decade, the chip size has decreased significantly along with the L/S on the substrate. The decreasing chip scales and smaller L/S distances has created unique challenges for both printed circuit board (PCB) industry and the semiconductor industry. Fan-out panel-level packaging (FOPLP) is a new manufacturing technology that seeks to bring the PCB world and IC/semiconductor world even closer. While FOPLP is still an emerging technology, the amount of high-volume production in this market space provide a financial incentive to develop innovative solutions in order to enable its ramp up. The most important performance aspect of the fine line plating in this market space is plating uniformity or planarity. Plating uniformity, trace/via top planarity, which measures how flat the top of the traces and vias are a few major features. This is especially important in multilayer processing, as nonuniformity on a lower layer can be transferred to successive layers, disrupting the device design with catastrophic consequences such as short circuits. Additionally, a non-planar surface could also result in signal transmission loss by distortion of the connecting points, like vias and traces. Therefore, plating solutions that provide a uniform, planar profile without any special post treatment are quite desirable.

MacDermid Inc.

Development of a Consistent and Reliable Thermal Conductivity Measurement Method, Adapted to Typical Composite Materials Used in the PCB Industry

Technical Library | 2017-05-04 17:35:01.0

Most of today's printed circuit board base materials are anisotropic and it is not possible to use a simple method to measure thermal conductivity along the different axis, especially when a good accuracy is expected. Few base material suppliers' datasheet show X, Y and Z thermal conductivities. In most cases, a single value is given, moreover determined with a generic methodology, and not necessarily adapted to the reality of glass-reinforced composites with a strong anisotropy.After reminding of the fundamentals in thermal science, this paper gives an overview of the state-of the art in terms of thermal conductivity measurement on PCB base materials, and some typical values. It finally proposes an innovative method called transient fin method, and associated test sample, to perform reliable and consistent in plane thermal conductivity measurement on anisotropic PCB base materials.

CIMULEC

Approaches to Overcome Nodules and Scratches on Wire Bondable Plating on PCBs

Technical Library | 2020-08-27 01:22:45.0

Initially adopted internal specifications for acceptance of printed circuit boards (PCBs) used for wire bonding was that there were no nodules or scratches allowed on the wirebond pads when inspected under 20X magnification. The nodules and scratches were not defined by measurable dimensions and were considered to be unacceptable if there was any sign of a visual blemish on wire-bondable features. Analysis of the yield at a PCB manufacturer monitored monthly for over two years indicated that the target yield could not be achieved, and the main reasons for yield loss were due to nodules and scratches on the wirebonding pads. The PCB manufacturer attempted to eliminate nodules and scratches. First, a light-scrubbing step was added after electroless copper plating to remove any co-deposited fine particles that acted as a seed for nodules at the time of copper plating. Then, the electrolytic copper plating tank was emptied, fully cleaned, and filtered to eliminate the possibility of co-deposited particles in the electroplating process. Both actions greatly reduced the density of the nodules but did not fully eliminate them. Even though there was only one nodule on any wire-bonding pad, the board was still considered a reject. To reduce scratches on wirebonding pads, the PCB manufacturer utilized foam trays after routing the boards so that they did not make direct contact with other boards. This action significantly reduced the scratches on wire-bonding pads, even though some isolated scratches still appeared from time to time, which caused the boards to be rejected. Even with these significant improvements, the target yield remained unachievable. Another approach was then taken to consider if wire bonding could be successfully performed over nodules and scratches and if there was a dimensional threshold where wire bonding could be successful. A gold ball bonding process called either stand-off-stitch bonding (SSB) or ball-stitch-on-ball bonding (BSOB) was used to determine the effects of nodules and scratches on wire bonds. The dimension of nodules, including height, and the size of scratches, including width, were measured before wire bonding. Wire bonding was then performed directly on various sizes of nodules and scratches on the bonding pad, and the evaluation of wire bonds was conducted using wire pull tests before and after reliability testing. Based on the results of the wire-bonding evaluation, the internal specification for nodules and scratches for wirebondable PCBs was modified to allow nodules and scratches with a certain height and a width limitation compared to initially adopted internal specifications of no nodules and no scratches. Such an approach resulted in improved yield at the PCB manufacturer.

Teledyne DALSA

Improving Thermal Cycle and Mechanical Drop Impact Resistance of a Lead-free Tin-Silver-Bismuth-Indium Solder Alloy with Minor Doping of Copper Additive

Technical Library | 2018-07-11 22:46:13.0

For a demanding automotive electronics assembly, a highly thermal fatigue resistant solder alloy is required, which makes the lead-free Sn-Ag-Cu type solder alloy unusable. Sn-Ag-Bi-In solder alloy is considered as a high reliability solder alloy due to significant improvement in thermal fatigue resistance as compared to a standard Sn-Ag-Cu alloy. The alloy has not only good thermal fatigue properties but it also has superior ductility and tensile strength by appropriate addition of In; however, initial results indicated a sub-par performance in joint reliability when it is soldered on a printed circuit board (PCB) with Electroless Nickel Immersion Gold (ENIG) surface finish. Numerous experiments were performed to find out appropriate alloying element which would help improve the performance on ENIG PCBs. Sn-Ag-Bi-In solder alloys with and without Cu additions were prepared and then tests were carried out to see the performance in a thermal fatigue test and a drop resistance test.to investigate the impact of Cu addition towards the improvement of joint reliability on ENIG finish PCB. Also, the mechanism of such improvement is documented.

Koki Company LTD


screen and print searches for Companies, Equipment, Machines, Suppliers & Information

SMTAI 2024 - SMTA International

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
Solder Paste Dispensing

Component Placement 101 Training Course
PCB Handling Machine with CE

Software for SMT placement & AOI - Free Download.
IPC Training & Certification - Blackfox

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.