Technical Library: screen printer cycles (Page 1 of 1)

Tackling SMT Enemy Number One - Raising The Standard of Solder Paste Application

Technical Library | 2009-05-14 13:57:43.0

Is screen printing technology able to keep pace with rising quality demands and increasingly complex board layouts? Or, is new jet printing technology ready to fill the gap? A comparison study between the two methods reveals some interesting differences. Screen printers offer some possibilities for optimizing solder paste deposits, but optimization is far easier and quicker with the jet printer. At the same time, the ability to print individualized deposits on every single pcb pad may be the ultimate answer to the growing quality challenge.

Mycronic Technologies AB

A New Stencil Rulebook for Wafer Level Solder Ball Placement using High Accuracy Screen Printing

Technical Library | 2007-12-13 17:03:02.0

Printer-hosted processes for solder ball placement are now widely used for package technologies ranging from BGAs using ball diameters above 750μm to the latest WL-CSPs demanding 250μm diameter. This broadening spectrum of applications brings more choices in terms of stencil design rules and production methodologies.

ASM Assembly Systems (DEK)

Screen-Printing Fabrication and Characterization of Stretchable Electronics

Technical Library | 2017-03-09 17:37:05.0

This article focuses on the fabrication and characterization of stretchable interconnects for wearable electronics applications. Interconnects were screen-printed with a stretchable silver-polymer composite ink on 50-μm thick thermoplastic polyurethane. The initial sheet resistances of the manufactured interconnects were an average of 36.2 mΩ/◽, and half the manufactured samples withstood single strains of up to 74%. The strain proportionality of resistance is discussed, and a regression model is introduced. Cycling strain increased resistance. However, the resistances here were almost fully reversible, and this recovery was time-dependent. Normalized resistances to 10%, 15%, and 20% cyclic strains stabilized at 1.3, 1.4, and 1.7. We also tested the validity of our model for radio-frequency applications through characterization of a stretchable radio-frequency identification tag.

Tampere University of Technology

IoT for Real-Time Measurement of High-Throughput Liquid Dispensing in Laboratory Environments

Technical Library | 2020-03-04 23:53:17.0

Critical to maintaining quality control in high-throughput screening is the need for constant monitoring of liquid-dispensing fidelity. Traditional methods involve operator intervention with gravimetric analysis to monitor the gross accuracy of full plate dispenses, visual verification of contents, or dedicated weigh stations on screening platforms that introduce potential bottlenecks and increase the plate-processing cycle time. We present a unique solution using open-source hardware, software, and 3D printing to automate dispenser accuracy determination by providing real-time dispense weight measurements via a network-connected precision balance. This system uses an Arduino microcontroller to connect a precision balance to a local network. By integrating the precision balance as an Internet of Things (IoT) device, it gains the ability to provide real-time gravimetric summaries of dispensing, generate timely alerts when problems are detected, and capture historical dispensing data for future analysis. All collected data can then be accessed via a web interface for reviewing alerts and dispensing information in real time or remotely for timely intervention of dispense errors. The development of this system also leveraged 3D printing to rapidly prototype sensor brackets, mounting solutions, and component enclosures.

SLAS Technology

Maintenance and operation of walk-in temperature humidity test chamber

Technical Library | 2019-11-17 22:46:45.0

Overview of walk-in temperature and humidity chamber: It also belongs to environmental test equipment, it tests whether the product can resist high temperature, low temperature, humidity, or the physical and chemical changes produced under extreme conditions, the walk-in temperature and humidity chamber volume is large, the product is placed, or a large object can be placed, such as automobile, new energy, television and liquid crystal screen, etc. How to do the routine maintenance of the walk-in temperature and humidity chamber: 1. The wet gauze basically, if there is no special case, s/b usually changed once in 3 months 2. The water channel shall be regularly cleaned, including water cup, water tank, etc., so as to prevent the water from being blocked,affect the humidity test. 3. It is forbidden to test the flammable and explosive products inside working room. 4. Clean the chamber on a regular basis 2. How to operate walk-in temperature and humidity chamber: The operation method is same as standard temperature humidity test chamber,the controller is 7-inch LCD programmable color screen, you only need to setthe temperature point---test time--how many cycles need to be tested, This can be done automatically, and the machine will stop automatically when it is complete. If there is any problem during the operation, the corresponding problem point will be displayed on the machine control screen. Walk-in temperature and humidity chamber is a must equipment for reliability test of Automobile,Aerospace,Electronic parts,etc,the operation and maintenance are easy,it is teh tear down mahcine,Climatest engineers will be dispatched to do on-site support,for instance,we will finish commissioning,train customers how to operate,maintain,welcome to follow our company facebook page:https://www.facebook.com/Climatechambers

Symor Instrument Equipment Co.,Ltd

ADVANCED BORON NITRIDE EPOXY FORMULATIONS EXCEL IN THERMAL MANAGEMENT APPLICATIONS

Technical Library | 2020-10-14 14:33:36.0

Epoxy based adhesives are prevalent interface materials for all levels of electronic packaging. One reason for their widespread success is their ability to accept fillers. Fillers allow the adhesive formulator to tailor the electrical and thermal properties of a given epoxy. Silver flake allow the adhesive to be both electrically conductive and thermally conductive. For potting applications, heat sinking, and general encapsulation where high electrical isolation is required, aluminum oxide has been the filler of choice. Today, advanced Boron Nitride filled epoxies challenge alternative thermal interface materials like silicones, greases, tapes, or pads. The paper discusses key attributes for designing and formulating advanced thermally conductive epoxies. Comparisons to other common fillers used in packaging are made. The filler size, shape and distribution, as well as concentration in the resin, will determine the adhesive viscosity and rheology. Correlation's between Thermal Resistance calculations and adhesive viscosity are made. Examples are shown that determination of thermal conductivity values in "bulk" form, do not translate into actual package thermal resistance. Four commercially available thermally conductive adhesives were obtained for the study. Adhesives were screened by shear strength measurements, Thermal Cycling ( -55 °C to 125 °C ) Resistance, and damp heat ( 85 °C / 85 %RH ) resistance. The results indicate that low modulus Boron Nitride filled epoxies are superior in formulation and design. Careful selection of stress relief agents, filler morphology, and concentration levels are critical choices the skilled formulator must make. The advantages and limitations of each are discussed and demonstrated.

Epoxy Technology, Inc.

  1  

screen printer cycles searches for Companies, Equipment, Machines, Suppliers & Information