Technical Library: side push testing (Page 1 of 2)

Characterization of No Clean Solderpaste Residues: The Relationship to In-Circuit Testing

Technical Library | 1999-05-07 11:24:21.0

Many manufacturers have now completed the conversion to no clean solder paste. Many factors governed this initial conversion, among those being cosmetics, solder ability, and process ability. In circuit testing or probing through no clean solder paste residues has topically not been a major factor in the conversion decision for several reasons. Due to board design, solder paste was only used on one side of the board and not subjected to testing...

Kester

Print Performance Studies Comparing Electroform and Laser-Cut Stencils

Technical Library | 2015-11-05 15:09:27.0

There has been recent activity and interest in Laser-Cut Electroform blank foils as an alternative to normal Electroform stencils. The present study will investigate and compare the print performance in terms of % paste transfer as well the dispersion in paste transfer volume for a variety of Electroform and Laser-Cut stencils with and without post processing treatments. Side wall quality will also be investigated in detail. A Jabil solder paste qualification test board will be used as the PCB test vehicle.

Photo Stencil LLC

Factors That Influence Side-Wetting Performance on IC Terminals

Technical Library | 2023-08-04 15:27:30.0

A designed experiment evaluated the influence of several variables on appearance and strength of Pb-free solder joints. Components, with leads finished with nickel-palladium-gold (NiPdAu), were used from Texas Instruments (TI) and two other integrated circuit suppliers. Pb-free solder paste used was tin-silver-copper (SnAgCu) alloy. Variables were printed wiring board (PWB) pad size/stencil aperture (the pad finish was consistent; electrolysis Ni/immersion Au), reflow atmosphere, reflow temperature, Pd thickness in the NiPdAu finish, and thermal aging. Height of solder wetting to component lead sides was measured for both ceramic plate and PWB soldering. A third response was solder joint strength; a "lead pull" test determined the maximum force needed to pull the component lead from the PWB. This paper presents a statistical analysis of the designed experiment. Reflow atmosphere and pad size/stencil aperture have the greatest contribution to the height of lead side wetting. Reflow temperature, palladium thickness, and preconditioning had very little impact on side-wetting height. For lead pull, variance in the data was relatively small and the factors tested had little impact.

Texas Instruments

A Study to Determine the Impact of Solder Powder Mesh Size and Stencil Technology Advancement on Deposition Volume when Printing Solder Paste

Technical Library | 2017-04-13 16:14:27.0

The drive to reduced size and increased functionality is a constant in the world of electronic devices. In order to achieve these goals, the industry has responded with ever-smaller devices and the equipment capable of handling these devices. The evolution of BGA packages and leadless devices is pushing existing technologies to the limit of current assembly techniques and materials.As smaller components make their way into the mainstream PCB assembly market, PCB assemblers are reaching the limits of Type 3 solder paste, which is currently in use by most manufacturers.The goal of this study is to determine the impact on solder volume deposition between Type 3, Type 4 and Type 5 SAC305 alloy powder in combination with stainless steel laser cut, electroformed and the emerging laser cut nano-coated stencils. Leadless QFN and μBGA components will be the focus of the test utilizing optimized aperture designs.

AIM Solder

Stencil Printing Process Tools for Miniaturisation and High Yield Processing

Technical Library | 2023-06-12 19:00:21.0

The SMT print process is now very mature and well understood. However as consumers continually push for new electronic products, with increased functionality and smaller form factor, the boundaries of the whole assembly process are continually being challenged. Miniaturisation raises a number of issues for the stencil printing process. How small can we print? What are the tightest pitches? Can we print small deposits next too large for high mix technology assemblies? How closely can we place components for high density products? ...And then on top of this, how can we satisfy some of the cost pressures through the whole supply chain and improve yield in the production process! Today we are operating close to the limits of the stencil printing process. The area ratio rule (the relationship between stencil aperture opening and aperture surface area) fundamentally dictates what can and cannot be achieved in a print process. For next generation components and assembly processes these established rules need to be broken! New stencil printing techniques are becoming available which address some of these challenges. Active squeegees have been shown to push area ratio limits to new boundaries, permitting printing for next generation 0.3CSP technology. Results also indicate there are potential yield benefits for today's leading edge components as well. Stencil coatings are also showing promise. In tests performed to date it is becoming apparent that certain coatings can provide higher yield processing by extending the number of prints that can be performed in-between stencil cleans during a print process. Preliminary test results relating to the stencil coating technology and how they impact miniaturisation and high yield processing will be presented.

ASM Assembly Systems (DEK)

Make the Right Design Choices in Load Switching and Simulation in a High Current and Mechatronic Functional Test

Technical Library | 2016-02-04 19:11:47.0

In a typical mechatronic manufacturing functional test setup, actual load simulations are usually done by connecting the DUT outputs to power or ground in order to establish either a high or low side driver. Each output is connected with different load and the test will either be sequential or concurrent. At lower power levels, these can usually be managed with general purpose switches. However, when it comes to higher power levels of currents more than 5 amps, such switching and loading might pose a greater challenge. Furthermore, critically in the manufacturing line, the tradeoff between cost and test time would have a great influence on the test strategy.This paper will present some key points to design a cost effective high power switching and load management solution.

Keysight Technologies

Noise Fault Detection of High Low Temperature Test Chamber(Climatic chamber)

Technical Library | 2019-04-11 06:04:49.0

With the development of science and technology, the climatic chamber quality has been improved, and the failure rate is reduced, but there still have the failure probability.today we introduce what are the mian factors for big noise high low temperature test chamber: 1.External factors: the bottom angle is uneven, the ground is uneven, adjust the bottom angle, ensure the equipment is in a horizontal position; 2.The equipment is touched other objects or pushed against the wall,pls remove the objects and keep a certain distance from the wall. 3.Compressor noise:check whether the compressor collides with the pipeline,and evaporator dish is loose or not. 4.Check whether compressor shock absorbers are aging and replace them. 5.Solenoid valve noise: solenoid valve reversing caue loud sound, pls add damping glue, if no effect, need to replace solenoid valve. If there is AC noise, need to replace the power board. 6.Check wether the fan or the fan string shaft make noise,whether the fan blades are touched and deformed, whether the fan is fixed or not, pls adjust accordingly or add the rubber pad. If further technical questions,contact us without hesitation!---Climtest Symor® technical team

Symor Instrument Equipment Co.,Ltd

Optimising Solder Paste Volume for Low Temperature Reflow of BGA Packages

Technical Library | 2020-09-23 21:37:25.0

The need to minimise thermal damage to components and laminates, to reduce warpage-induced defects to BGA packages, and to save energy, is driving the electronics industry towards lower process temperatures. For soldering processes the only way that temperatures can be substantially reduced is by using solders with lower melting points. Because of constraints of toxicity, cost and performance, the number of alloys that can be used for electronics assembly is limited and the best prospects appear to be those based around the eutectic in the Bi-Sn system, which has a melting point of about 139°C. Experience so far indicates that such Bi-Sn alloys do not have the mechanical properties and microstructural stability necessary to deliver the reliability required for the mounting of BGA packages. Options for improving mechanical properties with alloying additions that do not also push the process temperature back over 200°C are limited. An alternative approach that maintains a low process temperature is to form a hybrid joint with a conventional solder ball reflowed with a Bi-Sn alloy paste. During reflow there is mixing of the ball and paste alloys but it has been found that to achieve the best reliability a proportion of the ball alloy has to be retained in the joint, particular in the part of the joint that is subjected to maximum shear stress in service, which is usually the area near the component side. The challenge is then to find a reproducible method for controlling the fraction of the joint thickness that remains as the original solder ball alloy. Empirical evidence indicates that for a particular combination of ball and paste alloys and reflow temperature the extent to which the ball alloy is consumed by mixing with the paste alloy is dependent on the volume of paste deposited on the pad. If this promising method of achieving lower process temperatures is to be implemented in mass production without compromising reliability it would be necessary to have a method of ensuring the optimum proportion of ball alloy left in the joint after reflow can be consistently maintained. In this paper the author explains how the volume of low melting point alloy paste that delivers the optimum proportion of retained ball alloy for a particular reflow temperature can be determined by reference to the phase diagrams of the ball and paste alloys. The example presented is based on the equilibrium phase diagram of the binary Bi-Sn system but the method could be applied to any combination of ball and paste alloys for which at least a partial phase diagram is available or could be easily determined.

Nihon Superior Co. Ltd

Using Automated 3D X-Ray Inspection to Detect BTC Defects

Technical Library | 2013-07-25 14:02:15.0

Bottom-termination components (BTC), such as QFNs, are becoming more common in PCB assemblies. These components are characterized by hidden solder joints. How are defects on hidden DFN joints detected? Certainly, insufficient solder joints on BTCs cannot be detected by manual visual inspection. Nor can this type of defect be detected by automated optical inspection; the joint is hidden by the component body. Defects such as insufficients are often referred to as "marginal" defects because there is likely enough solder present to make contact between the termination on the bottom-side of the component and the board pad for the component to pass in-circuit and functional test. Should the board be subjected to shock or vibration, however, there is a good chance this solder connection will fracture, leading to an open connection.

Flex (Flextronics International)

Whisker Formation Induced by Component and Assembly Ionic Contamination

Technical Library | 2023-02-13 18:56:42.0

This paper describes the results of an intensive whisker formation study on Pb-free assemblies with different levels of cleanliness. Thirteen types of as-received surface-mount and pin-through-hole components were cleaned and intentionally contaminated with solutions containing chloride, sulfate, bromide, and nitrate. Then the parts were assembled on double-sided boards that were also cleaned or intentionally contaminated with three fluxes having different halide contents. The assemblies were subjected to high-temperature/high-humidity testing (85_C/85% RH). Periodic examination found that contamination triggered whisker formation on both exposed tin and solder fillets. Whisker occurrence and parameters depending on the type and level of contamination are discussed. Cross-sections were used to assess the metallurgical aspects of whisker formation and the microstructural changes occurring during corrosion.

Celestica Corporation

  1 2 Next

side push testing searches for Companies, Equipment, Machines, Suppliers & Information