Technical Library: singulation of flex (Page 1 of 1)

PCB Laser Depanelizing Using a UV Laser

Technical Library | 2016-10-06 15:13:02.0

One of the methods gaining in popularity for singulating rigid/flex, rigid and flex circuit boards post assembly is through the use of laser routing. This method has the advantage of speed, positional accuracy, no tooling wear and lastly no induced mechanical stresses on components during the singulating process.

BEST Inc.

Wettable-Flanks: Enabler for the Use of Bottom-Termination Components in Mass Production of High-Reliability Electronic Control Units

Technical Library | 2018-05-23 12:12:43.0

Driven by miniaturization, cost reduction and tighter requirements for electrical and thermal performance, the use of lead-frame based bottom-termination components (LF-BTC) as small-outline no-leads (SON), quad-flat no leads (QFN) packages etc., is increasing. However, a major distractor for the use of such packages in high-reliability applications has been the lack of a visible solder (toe) fillet on the edge surface of the pins: because the post-package assembly singulation process typically leaves bare copper leadframe at the singulation edge, which is not protected against oxidation and thus does not easily solder-wet, a solder fillet (toe fillet) does not generally develop.

Robert Bosch LLC Automotive Electronics Division

Avoidance of Ceramic-Substrate-Based LED Chip Cracking Induced by PCB Bending or Flexing

Technical Library | 2022-09-25 20:18:33.0

Printed circuit board (PCB) bending and/or flexing is an unavoidable phenomenon that is known to exist and is easily encountered during electronic board assembly processes. PCB bending and/or flexing is the fundamental source of tensile stress induced on the electronic components on the board assembly. For more brittle components, like ceramic-based electronic components, micro-cracks can be induced, which can eventually lead to a fatal failure of the components. For this reason, many standards organizations throughout the world specify the methods under which electronic board assemblies must be tested to ensure their robustness, sometimes as a pre-condition to more rigorous environmental tests such as thermal cycling or thermal shock.

Cree Lighting

Material Effects of Laser Energy When Processing Circuit Board Substrates during Depaneling

Technical Library | 2017-04-27 17:10:16.0

Using modern laser systems for the depanelization of circuit boards can create some challenges for the production engineer when it is compared to traditional mechanical singulation methods. Understanding the effects of the laser energy to the substrate material properly is essential in order to take advantage of the technology without creating unintended side effects. This paper presents an in-depth analysis of the various laser system operating parameters that were performed to determine the resulting substrate material temperature changes. A theoretical model was developed and compared to actual measurements. The investigation includes how the temperature increase resulting from laser energy during depaneling affects the properties of the PCB substrate, which varies from no measurable change to a lowering of the surface resistance of the cut wall depending on the cutting parameters.

LPKF Laser & Electronics

Electromechanical Reliability Testing of Flexible Hybrid Electronics Incorporating FleX Silicon-on-Polymer ICs

Technical Library | 2021-08-18 01:24:20.0

Flexible Hybrid Electronics combine the best characteristics of printed electronics and silicon ICs to create high performance, ultra-thin, physically flexible systems. New static and dynamic tests are being developed to evaluate the performance of these systems. Dynamic radius of curvature and torsional test results are presented for a flexible hybrid electronics system with a FleX Silicon-on-Polymer operational amplifier manufactured in an 180nm CMOS process with 4-levels of metal interconnect mounted on a PET substrate.

American Semiconductor, Inc.

Investigation of Cutting Quality and Mitigation Methods for Laser Depaneling of Printed Circuit Boards

Technical Library | 2019-09-11 23:33:04.0

There are numerous techniques to singulate printed circuit boards after assembly including break-out, routing, wheel cutting and now laser cutting. Lasers have several desirable advantages such as very narrow kerf widths as well as virtually no dust, no mechanical stress, visual pattern recognition and fast set-up changes. The very narrow kerf width resulting from laser ablation and the very tight tolerance of the cutting path placement allows for more usable space on the panel. However, the energy used in the laser cutting process can also create unwanted products on the cut walls as a result of the direct laser ablation. The question raised often is: What are these products, and how far can the creation of such products be mitigated through variation of the laser cutting process, laser parameters and material handling? This paper discusses the type and quantity of the products found on sidewalls of laser depaneled circuit boards and it quantifies the results through measurements of breakdown voltage, as well as electrical impedance. Further this paper discusses mitigation strategies to prevent or limit the amount of change in surface quality as a result of the laser cutting process. Depending on the final application of the circuit board it may prompt a need for proper specification of the expected results in terms of cut surface quality. This in turn will impact the placement of runs and components during layout. It will assist designers and engineers in defining these parameters sufficiently in order to have a predictable quality of the circuit boards after depaneling.

LPKF Laser & Electronics

Impact of FPC Fabrication Process on SMT Reliability

Technical Library | 2013-12-05 17:09:03.0

The functionality of electronic devices continues to increase at an extraordinary rate. Simultaneously consumers are expecting even more and in ever smaller packages. One enabler for shrinking electronics has been the flexible circuit board that allows the circuit board to fit a wide variety of shapes. Flexible printed circuits (FPC) have the capability to be very thin and can have unpackaged components directly attached using surface mount technology (SMT) and flip chip on flex technologies. Bare die can also be thinned and attached very close to the circuit board. However one caveat of high density flexible circuit boards with thin die is that they can be very fragile. The use of back side films and underfill can protect the die making circuits more robust. For underfill to work well it requires good adhesion to the circuit board which can mean that flux residues under the die normally must be removed prior to underfilling.

Starkey Hearing Technologies

Stress Analysis and Optimization of a Flip Chip on Flex Electronic Packaging Method for Functional Electronic Textiles

Technical Library | 2020-12-24 02:50:56.0

A method for packaging integrated circuit silicon die in thin flexible circuits has been investigated that enables circuits to be subsequently integrated within textile yarns. This paper presents an investigation into the required materials and component dimensions in order to maximize the reliability of the packaging method. Two die sizes of 3.5 mm×8 mm× 0.53 mm and 2 mm×2 mm×0.1 mm have been simulated and evaluated experimentally under shear load and during bending. The shear and bending experimental results show good agreement with the simulation results and verify the simulated optimal thickness of the adhesive layer. Three underfill adhesives (EP30AO, EP37-3FLF, and Epo-Tek 301 2fl), three highly flexible adhesives (Loctite 4860, Loctite 480, and Loctite 4902), and three substrates (Kapton,Mylar, and PEEK) have been evaluated, and the optimal thickness of each is found. The Kapton substrate, together with the EP37-3FLF adhesive, was identified as the best materials combination with the optimum underfill and substrate thickness identified as 0.05 mm.

University of Southampton

7 Benefits of Choosing Professional PCB Manufacturers and Assemblers

Technical Library | 2020-05-28 02:19:28.0

Properly functioning printed circuit boards are essential for both manufacturers of electronic devices and also the developers if the overall intent is for the electronic device to function at high capacity. From designing the schematics of the printed circuit boards to testing the products, there is no process of PCB manufacturing and/or assembly that can be taken for granted. While it's true that you can attempt this process on your own, especially if you are in possession of a large scale manufacturing facility, here are a few reasons why it would be a better option to opt for a professional company for PCB manufacturing and assembly. 1. Variety A professional printed circuit boards manufacturing company will be able to offer you a huge variety. You will be able to choose from rigid, flexible, or rigid-flex. What's more, the PCBs will be customized as per the need of the application. 2. Quality Professional and good printed circuit board manufacturing and assembling companies might cost you just a little bit extra but they also guarantee to produce the best results and offer very high quality products. In the end, it is quality that will make the difference between mediocre and a high functioning PCB. 3. Cost Efficiency Since you don't have to waste time or resources on buying equipment to produce the best PCBs or hiring staff to oversee the process, you can actually end up saving money. You can even save on PCB assembly cost by hiring this job out. All you have to do is to negotiate the quote and sit back, relax, and wait for the PCBs to be delivered to you. 4. Eliminate Design Flaws Design engineers hired by PCB manufacturing and assembling companies use the best graphic software to develop and test the schematics of PCBs. This increases the chances of eliminating flaws in the printed circuit boards during the initial design phase. 5. Multilayer PCB Manufacturing and Assembly The process of manufacturing and assembling multilayer PCBs is as intricate as it sounds. All processes of manufacturing and assembling multilayer PCBs require the best machines and trained technicians to pass the quality and functionality tests. Manufacturing and assembling multilayer printed circuit boards yourself is going to cost you a lot. Even the smallest of mistakes during the manufacturing and assembling process might render the entire PCB entirely useless. 6. Save Time PCBs are just a single part of the electronic device. To complete the device, many more pieces would be needed. The manufacturers of the electronic device can hire out the job of manufacturing or assembling the PCBs, which will mean they will have one less chore to do. This, in turn, will save you a lot of time which could be spent on elevating the quality of the product. 7. Experience Experience makes all the difference. It is what makes the name of any company reliable in the market. Long experience of manufacturing and assembling printed circuit boards makes the company well versed in the process and it also makes it an expert to identify design, manufacturing, assembling, and testing needs of certain applications We, at Asia Pacific Circuits, offer these benefits and so much more. For quick turn PCB assembly, PCB manufacturing and PCB designing, you can contact us anytime.

Asia Pacific Circuits Co., Ltd

Nondestructive Inspection of Underfill Layers Stacked up in Ceramics-Organics-Ceramics Packages with Scanning Acoustic Tomography (SAT)

Technical Library | 2017-06-15 00:44:19.0

Ceramics packages are being used in the electronics industry to operate the devices in harsh environments. In this paper we report a study on acoustic imaging technology for nondestructively inspecting underfill layers connecting organic interposers sandwiched between two ceramics substrates.First, we inspected the samples with transmission mode of scanning acoustic tomography (SAT) system, an inspection routine usually employed in assembly lines because of its simpler interpretation criteria: flawed region blocks the acoustic wave and appears darker. In this multilayer sample, this approach does not offer the crucial information at which layer of underfill has flaws. To resolve this issue, we use C-Mode Scanning in reflection mode to image layer by layer utilizing ultrasound frequencies from 15MHz to 120MHz. Although the sample is thick and contains at least 5 internal material interfaces, we are able to identify defective underfill layer interfaces.

Flex (Flextronics International)

  1  

singulation of flex searches for Companies, Equipment, Machines, Suppliers & Information