Technical Library: siplace led silicon (Page 1 of 1)

LED Encapsulation for Consumer Products

Technical Library | 2023-08-16 18:13:53.0

In one of our Consumer Electronics projects, a smart lighting company wished to dispense silicone-based LED encapsulation material for two different product sizes. The larger product had a 9mm circular dam which required silicone dispensing flush with the top of the dam. The smaller product had a 1mm LED die that required only the top to be encapsulated. The material consisted of two parts which were mixed by weight in a 1:1 ratio. A phosphor powder was added totaling 10% of the overall weight. The phosphor required agitation to remain suspended.

GPD Global

Effects of Packaging Materials on the Lifetime of LED Modules Under High Temperature Test

Technical Library | 2014-11-18 23:59:30.0

Performance degradation of packaging material is an important reason for the lifetime reduction of LED. In order to understanding the failure behavior of packaging material, silicone and phosphor were chosen to fabricate LED samples within which an aging test at 125℃ was performed. The result of online luminance measurement showed that LED samples with both silicone and phosphor had the highest luminance decay rate among all test samples because the carbonization of silicone and the consequent outgassing reduced the luminance quickly. The result of the luminance variance with test time was analyzed and an exponential decay model was developed with which the lifetime of LED under high temperature could be estimated.

Hubei University of Technology

The Foundation of the Silicon Age

Technical Library | 1999-05-06 13:35:26.0

The invention of the transistor almost fifty years ago was one of the most important technical developments of this century. It has had profound impact on the way we live and the way we work. This paper describes the events that led to the invention of the point-contact transistor in December of 1947. It continues with the development of the theory of the junction transistor in early 1948 and the fabrication of the first grown-junction transistor in 1950.

Alcatel-Lucent

Thermal Capabilities of Solder Masks and Other Coating Materials - How High Can We Go?

Technical Library | 2019-09-24 15:41:53.0

This paper focuses on three different coating material groups which were formulated to operate under high thermal stress and are applied at printed circuit board manufacturing level. While used for principally different applications, these coatings have in common that they can be key to a successful thermal management concept especially in e-mobility and lighting applications. The coatings consist of: Specialty (green transparent) liquid photoimageable solder masks (LPiSM) compatible with long-term thermal storage/stress in excess of 150°C. Combined with the appropriate high-temperature base material, and along with a suitable copper pre-treatment, these solder resists are capable of fulfilling higher thermal demands. In this context, long-term storage tests as well as temperature cycling tests were conducted. Moreover, the effect of various Cu pre-treatment methods on the adhesion of the solder masks was examined following 150, 175 and 200°C ageing processes. For this purpose, test panels were conditioned for 2000 hours at the respective temperatures and were submitted to a cross-cut test every 500 h. Within this test set-up, it was found that a multi-level chemical pre-treatment gives significantly better adhesion results, in particular at 175°C and 200°C, compared with a pre-treatment by brush or pumice brush. Also, breakdown voltage as well as tracking resistance were investigated. For an application in LED technology, the light reflectivity and white colour stability of the printed circuit board are of major importance, especially when high-power LEDs are used which can generate larger amounts of heat. For this reason, a very high coverage power and an intense white colour with high reflectivity values are essential for white solder masks. These "ultra-white" and largely non-yellowing LPiSM need to be able to withstand specific thermal loads, especially in combination with high-power LED lighting applications. The topic of thermal performance of coatings for electronics will also be discussed in view of printed heatsink paste (HSP) and thermal interface paste (TIP) coatings which are used for a growing number of applications. They are processed at the printed circuit board manufacturing level for thermal-coupling and heat-spreading purposes in various thermal management-sensitive fields, especially in the automotive and LED lighting industries. Besides giving an overview of the principle functionality, it will be discussed what makes these ceramic-filled epoxy- or silicone-based materials special compared to using "thermal greases" and "thermal pads" for heat dissipation purposes.

Lackwerke Peters GmbH + Co KG

  1  

siplace led silicon searches for Companies, Equipment, Machines, Suppliers & Information