Technical Library | 2023-12-15 03:06:24.0
The first process in the SMT industry is solder paste printing. After the solder paste printing is completed, electronic components are attached to PCB pads through a SMT machine, and then reflow soldered. A preliminary PCB board is roughly processed. SMT is a combination of multiple devices, and such a line is called an SMT production line. Our common PCBA is processed through this process. In SMT technology, each process is very important, and poor quality can be caused by different process defects. Today, we are discussing the causes and countermeasures of SMT printing collapse.
Technical Library | 2010-05-12 16:21:05.0
Numerous studies have shown that greater than 60% of end of line defects in SMT assembly can be traced to solder paste and the printing process. Reflowing adds another 15% or so. In light of this fact, it is surprising that no simplified procedure for solder paste evaluation has been documented. This paper is about such a procedure.
Technical Library | 2024-07-24 01:04:35.0
Quad Flat No Leads (QFN) package designs receive more and more attention in electronic industry recently. This package offers a number of benefits including (1) small size, such as a near die size footprint, thin profile, and light weight; (2) easy PCB trace routing due to the use of perimeter I/O pads; (3) reduced lead inductance; and (4) good thermal and electrical performance due to the adoption of exposed copper die-pad technology. These features make the QFN an ideal choice for many new applications where size, weight, electrical, and thermal properties are important. However, adoption of QFN often runs into voiding issue at SMT assembly. Upon reflow, outgassing of solder paste flux at the large thermal pad has difficulty escaping and inevitably results in voiding. It is well known that the presence of voids will affect the mechanical properties of joints and deteriorate the strength, ductility, creep, and fatigue life. In addition, voids could also produce spot overheating, lessening the reliability of the joints.
Technical Library | 2023-09-26 19:14:44.0
The transition from tin-lead to lead free soldering in the electronics manufacturing industry has been in progress for the past 10 years. In the interim period before lead free assemblies are uniformly accepted, mixed formulation solder joints are becoming commonplace in electronic assemblies. For example, area array components (BGA/CSP) are frequently available only with lead free Sn-Ag-Cu (SAC) solder balls. Such parts are often assembled to printed circuit boards using traditional 63Sn-37Pb solder paste. The resulting solder joints contain unusual quaternary alloys of Sn, Ag, Cu, and Pb. In addition, the alloy composition can vary across the solder joint based on the paste to ball solder volumes and the reflow profile utilized. The mechanical and physical properties of such Sn-Ag-Cu-Pb alloys have not been explored extensively in the literature. In addition, the reliability of mixed formulation solder joints is poorly understood.
Technical Library | 2021-08-25 16:28:36.0
In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by differential scanning calorimeter (DSC). A reflow profile was optimized based on the Sn–Bi reflow profile, and the Organic Solderability Preservative (OSP) Cu pad mounted 0603 chip resistor was chosen to reflow soldering and to prepare samples of the corresponding joint. The high temperature and humidity reliability of the solder joints at 85 #14;C/85% RH (Relative Humidity) for 1000 h and the thermal cycle reliability of the solder joints from
Technical Library | 2007-09-27 16:18:15.0
Considerable interest exists in the process known as the pinin- paste, or the Alternative Assembly and Reflow Technology (AART) process. The AART process allows for the simultaneous reflow of both odd-form and through hole devices as well as surface mount components. This process has several advantages over the typical mixed technology process sequence that includes wave soldering and/or hand soldering, often in addition to reflow soldering.
Technical Library | 2017-10-16 15:03:32.0
The miniaturization and advancement of electronic devices have been the driving force of design, research and development, and manufacturing in the electronic industry. However, there are some issues occurred associated with the miniaturization, for examples, warpage and reliability issues. In order to resolve these issues, a lot of research and development have been conducted in the industry and university with the target of moderate melting temperature solder alloys such as m.p. 280°C. These moderate temperature alloys have not resolve these issues yet due to the various limitations. YINCAE has been working on research and development of the materials with lower temperature soldering for higher temperature application. To meet this demand, YINCAE has developed solder joint encapsulant paste to enhance solder joint strength resulting in improving drop and thermal cycling performance to eliminate underfilling, edge bonding or corner bonding process in the board level assembly process. This solder joint encapsulant paste can be used in typical lead-free profile and after reflow the application temperature can be up to over 300C, therefore it also eliminates red glue for double side reflow process. In this paper, we will discuss the reliability such as strength of solder joints, drop test performance and thermal cycling performance using this solder joint encapsulant paste in detail.
1 |
Main Products: 1. Original new and Original Used SMT/AI Spare Parts. 2. SMT Equipments And Related Machine( SMT Calibration, SMT Feeder Carts,Conveyer etc.) 3. Maintenace and Repair Service Pre-Sales Service Provide details ab
Manufacturer's Representative / Manufacturer / Equipment Dealer / Broker / Auctions / Consultant / Service Provider
3 Road Xintang, Fuhai Street,Fuyong
Shenzhen, 30 China
Phone: 13713862102