Technical Library | 2018-09-26 20:33:26.0
Bottom terminated components, or BTCs, have been rapidly incorporated into PCB designs because of their low cost, small footprint and overall reliability. The combination of leadless terminations with underside ground/thermal pads have presented a multitude of challenges to PCB assemblers, including tilting, poor solder fillet formation, difficult inspection and – most notably – center pad voiding. Voids in large SMT solder joints can be difficult to predict and control due to the variety of input variables that can influence their formation. Solder paste chemistries, PCB final finishes, and reflow profiles and atmospheres have all been scrutinized, and their effects well documented. Additionally, many of the published center pad voiding studies have focused on optimizing center pad footprint and stencil aperture designs. This study focuses on I/O pad stencil modifications rather than center pad modifications. It shows a no-cost, easily implemented I/O design guideline that can be deployed to consistently and repeatedly reduce void formation on BTC-style packages.
Technical Library | 2009-12-14 20:24:19.0
In the lead-free era, thermal profiling has a critical role in the SMT assembly process. We discuss the profiling, tools, practical issues, and inspection methods of golden boards, and related tools. As the process window narrows, profiling equipment and/or thermocouple (TC) errors must be taken into consideration. In addition, the accuracy and attachment method of the thermocouple will significantly impact critical assemblies.
Technical Library | 2023-06-14 01:09:26.0
In the electronic packaging industry, it is important to be able to make accurate predictions of board level solder joint reliability during thermal cycling exposures. The Anand viscoelastic constitutive model is often used to represent the material behavior of the solder in finite element simulations. This model is defined using nine material parameters, and the reliability prediction results are often highly sensitive to the Anand parameters. In this work, an investigation on the Anand constitutive model and its application to SAC solders of various Ag contents (i.e. SACN05, with N = 1, 2, 3, 4) has been performed. For each alloy, both water quenched (WQ) and reflowed (RF) solidification profiles were utilized to establish two unique specimen microstructures, and the same reflow profile was used for all four of the SAC alloys so that the results could be compared and the effects of Ag content could be studied systematically.
Technical Library | 2014-03-20 12:37:39.0
In the beginning of SMT, Vapor Phase Soldering was the preferred reflow soldering technology because of its excellent heat transfer capabilities. There were also some disadvantages like fast temperature rise, nearly no influence on the temperature profiles and high costs. So the use of Vapor Phase Soldering was reduced to special applications with high mass or complex boards in low numbers (e.g. for military or aerospace use).
Technical Library | 2023-06-12 19:18:24.0
As any new technology emerges, increasing levels of refinement are required to facilitate the mainstream implementation and continual improvement processes. In the case of lead-free processing, the initial hurdles of alloy and chemistry selection are cleared on the first level, providing a base process. The understanding gained from early work on the base process leads to the next level of refinement in optimizing the primary factors that influence yield. These factors may include thermal profiles, PWB surface finishes, component metallization, solder mask selection or stencil design.
Technical Library | 2018-11-06 12:42:25.0
Solder paste is a homogeneous, stable suspension of solder powder particles suspended in a flux binder, and is one of the most important process materials today in surface mount technology (SMT). By varying the solder particle size, distribution and shape, as well as the other constituent materials, the rheology and printing performance of solder pastes can be controlled. Paste flow behavior is very important in defining the printing performance of any paste.The purpose of this paper is to study the rheological behavior of SAC (Sn-Ag-Cu) solder paste used for surface mount applications in the electronic industry. The reason why the rheological tests are presented in this paper are two critical sub-processes: aperture filling and paste withdraw. In this paper, we report on the investigation of the rheological profiles, the serrated cone-to-plate system was found as effective in parameter minimizing the wall-slip effect
Technical Library | 2013-06-05 23:14:44.0
The combination of higher lead-free process temperatures, smaller print deposits, and temperature restraints on electrical components has created difficult challenges in optimizing the reflow process. Not only are the electronic components and the PWB at risk, but the ability to achieve a robust solder joint becomes difficult, especially if the PCB is thermally massive. In addition, the constant miniaturization of electronic components, hence smaller solder paste deposits, may require the use of smaller particle-sized powders (...) This paper is a summary of best practices in optimizing the reflow process to meet these challenges of higher reflow temperatures, smaller print deposits, decreased powder particle size, and their affect on the reflow process.
Technical Library | 2024-07-24 01:04:35.0
Quad Flat No Leads (QFN) package designs receive more and more attention in electronic industry recently. This package offers a number of benefits including (1) small size, such as a near die size footprint, thin profile, and light weight; (2) easy PCB trace routing due to the use of perimeter I/O pads; (3) reduced lead inductance; and (4) good thermal and electrical performance due to the adoption of exposed copper die-pad technology. These features make the QFN an ideal choice for many new applications where size, weight, electrical, and thermal properties are important. However, adoption of QFN often runs into voiding issue at SMT assembly. Upon reflow, outgassing of solder paste flux at the large thermal pad has difficulty escaping and inevitably results in voiding. It is well known that the presence of voids will affect the mechanical properties of joints and deteriorate the strength, ductility, creep, and fatigue life. In addition, voids could also produce spot overheating, lessening the reliability of the joints.
1 |
Main Products: 1. Original new and Original Used SMT/AI Spare Parts. 2. SMT Equipments And Related Machine( SMT Calibration, SMT Feeder Carts,Conveyer etc.) 3. Maintenace and Repair Service Pre-Sales Service Provide details ab
Manufacturer's Representative / Manufacturer / Equipment Dealer / Broker / Auctions / Consultant / Service Provider
3 Road Xintang, Fuhai Street,Fuyong
Shenzhen, 30 China
Phone: 13713862102