Technical Library: snpb solder contamination tin (Page 1 of 2)

The Effect of Pb Mixing Levels on Solder Joint Reliability and Failure Mode of Backward Compatible, High Density Ball Grid Array Assemblies

Technical Library | 2015-01-08 17:26:59.0

Regardless of the accelerating trend for design and conversion to Pb-free manufacturing, many high reliability electronic equipment producers continue to manufacture and support tin-lead (SnPb) electronic products. Certain high reliability electronic products from the telecommunication, military, and medical sectors manufacture using SnPb solder assembly and remain in compliance with the RoHS Directive (restriction on certain hazardous substances) by invoking the European Union Pb-in-solder exemption. Sustaining SnPb manufacturing has become more challenging because the global component supply chain is converting rapidly to Pb-free offerings and has a decreasing motivation to continue producing SnPb product for the low-volume, high reliability end users. Availability of critical, larger SnPb BGA components is a growing concern

Sanmina-SCI

Lead-Free and Mixed Assembly Solder Joint Reliability Trends

Technical Library | 2022-10-31 17:30:40.0

This paper presents a quantitative analysis of solder joint reliability data for lead-free Sn-Ag-Cu (SAC) and mixed assembly (SnPb + SAC) circuit boards based on an extensive, but non-exhaustive, collection of thermal cycling test results. The assembled database covers life test results under multiple test conditions and for a variety of components: conventional SMT (LCCCs, resistors), Ball Grid Arrays, Chip Scale Packages (CSPs), wafer-level CSPs, and flip-chip assemblies with and without underfill. First-order life correlations are developed for SAC assemblies under thermal cycling conditions. The results of this analysis are put in perspective with the correlation of life test results for SnPb control assemblies. Fatigue life correlations show different slopes for SAC versus SnPb assemblies, suggesting opposite reliability trends under low or high stress conditions. The paper also presents an analysis of the effect of Pb contamination and board finish on lead-free solder joint reliability. Last, test data are presented to compare the life of mixed solder assemblies to that of standard SnPb assemblies for a wide variety of area-array components. The trend analysis compares the life of area-array assemblies with: 1) SAC balls and SAC or SnPb paste; 2) SnPb balls assembled with SAC or SnPb paste.

EPSI Inc.

Microstructure and Intermetallic Formation in SnAgCu BGA Components Attached With SnPb Solder Under Isothermal Aging

Technical Library | 2022-10-31 17:09:04.0

The global transition to lead-free (Pb-free) electronics has led component and equipment manufacturers to transform their tin–lead (SnPb) processes to Pb-free. At the same time, Pb-free legislation has granted exemptions for some products whose applications require high long-term reliability. However, due to a reduction in the availability of SnPb components, compatibility concerns can arise if Pb-free components have to be utilized in a SnPb assembly. This compatibility situation of attaching a Pb-free component in a SnPb assembly is generally termed "backward compatibility." This paper presents the results of microstructural analysis of mixed solder joints which are formed by attaching Pb-free solder balls (SnAgCu) of a ball-grid-array component using SnPb paste. The experiment evaluates the Pb phase coarsening in bulk solder microstructure and the study of intermetallic compounds formed at the interface between the solder and the copper pad.

CALCE Center for Advanced Life Cycle Engineering

Lead-free and Tin-lead Assembly and Reliability of Fine-pitch Wafer-Level CSPs

Technical Library | 2007-05-31 19:05:55.0

This paper discusses solder paste printing and flux dipping assembly processes for 0.4 and 0.5mm pitch lead-free WLCSPs and the corresponding assembly results and thermal cyclic reliability obtained. Variables evaluated include reflow ambient, paste type, and stencil design. Reliability is also compared to results for the same components assembled under identical conditions using SnPb solder.

Universal Instruments Corporation

Whisker Formation Induced by Component and Assembly Ionic Contamination

Technical Library | 2023-02-13 18:56:42.0

This paper describes the results of an intensive whisker formation study on Pb-free assemblies with different levels of cleanliness. Thirteen types of as-received surface-mount and pin-through-hole components were cleaned and intentionally contaminated with solutions containing chloride, sulfate, bromide, and nitrate. Then the parts were assembled on double-sided boards that were also cleaned or intentionally contaminated with three fluxes having different halide contents. The assemblies were subjected to high-temperature/high-humidity testing (85_C/85% RH). Periodic examination found that contamination triggered whisker formation on both exposed tin and solder fillets. Whisker occurrence and parameters depending on the type and level of contamination are discussed. Cross-sections were used to assess the metallurgical aspects of whisker formation and the microstructural changes occurring during corrosion.

Celestica Corporation

Solder Joint Reliability of Pb-free Sn-Ag-Cu Ball Grid Array (BGA) Components in Sn-Pb Assembly Process

Technical Library | 2020-10-27 02:07:31.0

For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.

Sanmina-SCI

HALT Testing of Backward Soldered BGAs on a Military Product

Technical Library | 2015-11-19 18:15:07.0

The move to lead free (Pb-free) electronics by the commercial industry has resulted in an increasing number of ball grid array components (BGAs) which are only available with Pb-free solder balls. The reliability of these devices is not well established when assembled using a standard tin-lead (SnPb) solder paste and reflow profile, known as a backward compatible process. Previous studies in processing mixed alloy solder joints have demonstrated the importance of using a reflow temperature high enough to achieve complete mixing of the SnPb solder paste with the Pb-free solder ball. Research has indicated that complete mixing can occur below the melting point of the Pb-free alloy and is dependent on a number of factors including solder ball composition, solder ball to solder paste ratio, and peak reflow times and temperatures. Increasing the lead content in the system enables full mixing of the solder joint with a reduced peak reflow temperature, however, previous research is conflicting regarding the effect that lead percentage has on solder joint reliability in this mixed alloy solder joint.

Lockheed Martin Corporation

Investigation and Development of Tin-Lead and Lead-Free Solder Pastes to Reduce the Head-In-Pillow Component Soldering Defect.

Technical Library | 2014-03-06 19:04:07.0

Over the last few years, there has been an increase in the rate of Head-in-Pillow component soldering defects which interrupts the merger of the BGA/CSP component solder spheres with the molten solder paste during reflow. The issue has occurred across a broad segment of industries including consumer, telecom and military. There are many reasons for this issue such as warpage issues of the component or board, ball co-planarity issues for BGA/CSP components and non-wetting of the component based on contamination or excessive oxidation of the component coating. The issue has been found to occur not only on lead-free soldered assemblies where the increased soldering temperatures may give rise to increase component/board warpage but also on tin-lead soldered assemblies.

Christopher Associates Inc.

Soldering Immersion Tin

Technical Library | 2019-04-10 22:08:31.0

The stimulating impact of the automotive industry has sharpened focus on immersion tin (i-Sn) more than ever before. Immersion tin with its associated attributes, is well placed to fulfill the requirements of such a demanding application. In an environment dominated by reliability, the automotive market not only has very stringent specifications but also demands thorough qualification protocols. Qualification is ultimately a costly exercise. The good news is that i-Sn is already qualified by many tier one OSATs. The focus of this paper is to generate awareness of the key factors attributed to soldering i-Sn. Immersion tin is not suitable for wire bonding but ultimately suited for multiple soldering applications. The dominant topics of this paper will be IMC formations in relation to reflow cycles and the associated solderability performance. Under contamination free conditions, i-Sn can provide a solderable finish even after multiple reflow cycles. The reflow conditions employed in this paper are typical for lead free soldering environments and the i-Sn thicknesses are approximately 1 μm.

Atotech

Going Lead Free With Vapor Phase Soldering - Lead Free Is Still a Challenge For Major Industries.

Technical Library | 2014-01-30 18:08:04.0

As of today, the electronic industry is aware of the requirements for their products to be lead free. All components are typically available in lead free quality. This comprises packages like BGAs with BGA solder balls to PCB board finishes like HASL. The suppliers are providing everything that is needed. It is harder to get the old tin leaded (SnPb) components for new applications today, than lead free ones. So why has not everybody changed over fully yet and how can the challenges be overcome? A big concern in this transition process is reflow soldering. The process temperatures for lead free applications became much higher. Related with this is more stress for all the components. It affects the quality and reliability of the electronic units and products...

IBL - Löttechnik GmbH

  1 2 Next

snpb solder contamination tin searches for Companies, Equipment, Machines, Suppliers & Information